早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求∂2z∂x∂y.

题目详情
设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求
2z
∂x∂y
▼优质解答
答案和解析
∵z=f(2x-y,ysinx)
∂x
z=
∂x
f(2x-y,ysinx)
=f1
∂x
(2x-y)+f2'
∂x
(ysinx)
=2f1′+ycosxf2'
2z
∂x∂y
=
∂y
(2f1′+ycosxf2')
=2
∂y
f1′+cosx
∂y
(yf2')
因为:
∂y
f1′=f11
∂y
(2x-y)+f12
∂y
(ysinx)
=-f11″+sinxf12
∂y
(yf2')=f2'+y
∂y
f2'
=f2'+y[f21
∂y
(2x-y)+f22
∂y
(ysinx)]
=f2'+y[-f21″+sinxf22″]
=f2'-yf21″+ysinxf22
所以:
2z
∂x∂y
=2
∂y
f1′+cosx
∂y
(yf2')
=2(-f11″+sinxf12″)+cosx(f2'-yf21″+ysinxf22″)
=-2f11″+2sinxf12″+cosxf2'-ycosf21″+ysinxcosxf22
又因为函数f具有连续二阶导数,所以其二阶混合偏导数相等,即:
f12″=f21
所以:
2z
∂x∂y
=-2f11″+2sinxf12″+cosxf2'-ycosf21″+ysinxcosxf22
=-2f11″+(2sinx-ycosx)f12″+cosxf2'+ysinxcosxf22
2z
∂x∂y
的值为:
-2f11″+(2sinx-ycosx)f12″+cosxf2'+ysinxcosxf22