早教吧作业答案频道 -->数学-->
如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.(Ⅰ)求证:平面AB1C⊥平面BDC1;(Ⅱ)求四面体AB1C1C的体积.
题目详情
如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.
(Ⅰ)求证:平面AB1C⊥平面BDC1;
(Ⅱ)求四面体AB1C1C的体积.
(Ⅰ)求证:平面AB1C⊥平面BDC1;
(Ⅱ)求四面体AB1C1C的体积.
▼优质解答
答案和解析
(Ⅰ)证明:如图,
在BAB1中,∵AB=1,BB1=2,∠B1BA=60°,
∴AB12=AB2+BB12-2AB•BB1cos60°=1+4-2×1×2×
=3,
∴AB12+AB2=BB12,
∴B1A⊥AB,
又∵侧面AA1B1B⊥底面ABCD,
∴B1A⊥底面ABCD,则B1A⊥BD,
又∵ABCD为正方形,
∴AC⊥BD,则BD⊥平面AB1C,
∴平面AB1C⊥平面BDC1;
(Ⅱ) ∵C1D∥B1A,AB1⊂平面AB1C,C1D⊄平面AB1C,
∴C1D∥平面AB1C,
VC1-AB1C=VD-AB1C=VB1-ACD=
×
×
=
.
在BAB1中,∵AB=1,BB1=2,∠B1BA=60°,
∴AB12=AB2+BB12-2AB•BB1cos60°=1+4-2×1×2×
1 |
2 |
∴AB12+AB2=BB12,
∴B1A⊥AB,
又∵侧面AA1B1B⊥底面ABCD,
∴B1A⊥底面ABCD,则B1A⊥BD,
又∵ABCD为正方形,
∴AC⊥BD,则BD⊥平面AB1C,
∴平面AB1C⊥平面BDC1;
(Ⅱ) ∵C1D∥B1A,AB1⊂平面AB1C,C1D⊄平面AB1C,
∴C1D∥平面AB1C,
VC1-AB1C=VD-AB1C=VB1-ACD=
1 |
3 |
1 |
2 |
3 |
| ||
6 |
看了 如图,斜四棱柱ABCD-A1...的网友还看了以下:
a//b,c垂直于a,则c一定垂直于b吗1.a//b,c垂直于a,则c一定垂直于b吗(判断并说明理 2020-05-13 …
a//b,c垂直于a,则c一定垂直于b吗1.a//b,c垂直于a,则c一定垂直于b吗(判断并说明理 2020-05-13 …
向量a模=b模=1,a与b夹角为60度,向量c=xb+yb,面积且0小于等于x小于等于1,0小于等 2020-05-14 …
1,在四面体OABC中,OA向量=a,OB向量=b,OC向量=c,D为BC中点,E为AD终点,则O 2020-05-14 …
在平面直角坐标系中,已知焦距为4的椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点 2020-05-15 …
若平面向量a,b 满足丨a+b丨=1,a+b平行于x轴,b=(2,-1),则a= 2020-05-15 …
已知A,B,C的对数是a,b,c,且a+b+c=0,证明:A(1/b+1/c)×B(1/a+1/c 2020-05-16 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
2)1、已知a>0,b>0,求证:(1/a+1/b)(1/a²+1/b²)(a³+b³)≥8(1/ 2020-06-04 …
不难,就是有点疑问,1≤a-b≤2,2≤a+b≤4,1≤a-b≤2,2≤a+b≤4,则5a-b的取 2020-07-16 …