早教吧作业答案频道 -->数学-->
如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.(Ⅰ)求证:平面AB1C⊥平面BDC1;(Ⅱ)求四面体AB1C1C的体积.
题目详情
如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.
(Ⅰ)求证:平面AB1C⊥平面BDC1;
(Ⅱ)求四面体AB1C1C的体积.
(Ⅰ)求证:平面AB1C⊥平面BDC1;
(Ⅱ)求四面体AB1C1C的体积.
▼优质解答
答案和解析
(Ⅰ)证明:如图,
在BAB1中,∵AB=1,BB1=2,∠B1BA=60°,
∴AB12=AB2+BB12-2AB•BB1cos60°=1+4-2×1×2×
=3,
∴AB12+AB2=BB12,
∴B1A⊥AB,
又∵侧面AA1B1B⊥底面ABCD,
∴B1A⊥底面ABCD,则B1A⊥BD,
又∵ABCD为正方形,
∴AC⊥BD,则BD⊥平面AB1C,
∴平面AB1C⊥平面BDC1;
(Ⅱ) ∵C1D∥B1A,AB1⊂平面AB1C,C1D⊄平面AB1C,
∴C1D∥平面AB1C,
VC1-AB1C=VD-AB1C=VB1-ACD=
×
×
=
.
在BAB1中,∵AB=1,BB1=2,∠B1BA=60°,
∴AB12=AB2+BB12-2AB•BB1cos60°=1+4-2×1×2×
1 |
2 |
∴AB12+AB2=BB12,
∴B1A⊥AB,
又∵侧面AA1B1B⊥底面ABCD,
∴B1A⊥底面ABCD,则B1A⊥BD,
又∵ABCD为正方形,
∴AC⊥BD,则BD⊥平面AB1C,
∴平面AB1C⊥平面BDC1;
(Ⅱ) ∵C1D∥B1A,AB1⊂平面AB1C,C1D⊄平面AB1C,
∴C1D∥平面AB1C,
VC1-AB1C=VD-AB1C=VB1-ACD=
1 |
3 |
1 |
2 |
3 |
| ||
6 |
看了 如图,斜四棱柱ABCD-A1...的网友还看了以下:
平行向量是非零向量,那零向量呢?如果A向量和B向量平行,B向量和C向量平行,那A和C向量平不平行呢 2020-04-05 …
如图,在平面直角坐标系中,直线y=4/3x+4分别交x轴 y轴于AB两点,点C为OB的中点如图,在 2020-05-16 …
平移抛物线y=二分之一x的平方,使顶点坐标为如果将抛物线y=ax的平方+bx+c向右平移2个单位, 2020-05-16 …
五、能量利用率计算(EMP\TCA\脂肪分解)六、蛋白质含量计算1、大多数蛋白质中氮的含量较恒定, 2020-07-03 …
如图所示,A为电磁铁,B为铁芯,C为套在铁芯B上的绝缘磁环.现将A、B、C放置在天平的左盘上,当A 2020-07-03 …
F=C-P+2C=S-R-R'S为物种数,比如水,如果有液态水和水蒸气,物种数应该是1还是2?R为 2020-07-20 …
关于勾股定理逆定理的一道选择题已知三角形的三边长为a,b,c,如果(a-5)的平方+b-12的绝对 2020-08-01 …
1.如图,AB为圆O的直径C为圆O上的一点,AD和过点C的切线互相垂直,垂足为D,求证:AC平分∠ 2020-08-01 …
勾股定理(难啊)直角三角形两条直角边的平方和等于斜角边的平方,即:如果直角三角形分别为a,b,c( 2020-08-03 …
一个轮子在平面做纯滚动运动,题设:圆心C,大地接触点为P.半径R,C的速度为匀速V.加速度恒定a.( 2020-12-09 …