早教吧作业答案频道 -->数学-->
如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.(Ⅰ)求证:平面AB1C⊥平面BDC1;(Ⅱ)求四面体AB1C1C的体积.
题目详情
如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.
(Ⅰ)求证:平面AB1C⊥平面BDC1;
(Ⅱ)求四面体AB1C1C的体积.
(Ⅰ)求证:平面AB1C⊥平面BDC1;
(Ⅱ)求四面体AB1C1C的体积.
▼优质解答
答案和解析
(Ⅰ)证明:如图,
在BAB1中,∵AB=1,BB1=2,∠B1BA=60°,
∴AB12=AB2+BB12-2AB•BB1cos60°=1+4-2×1×2×
=3,
∴AB12+AB2=BB12,
∴B1A⊥AB,
又∵侧面AA1B1B⊥底面ABCD,
∴B1A⊥底面ABCD,则B1A⊥BD,
又∵ABCD为正方形,
∴AC⊥BD,则BD⊥平面AB1C,
∴平面AB1C⊥平面BDC1;
(Ⅱ) ∵C1D∥B1A,AB1⊂平面AB1C,C1D⊄平面AB1C,
∴C1D∥平面AB1C,
VC1-AB1C=VD-AB1C=VB1-ACD=
×
×
=
.
在BAB1中,∵AB=1,BB1=2,∠B1BA=60°,
∴AB12=AB2+BB12-2AB•BB1cos60°=1+4-2×1×2×
1 |
2 |
∴AB12+AB2=BB12,
∴B1A⊥AB,
又∵侧面AA1B1B⊥底面ABCD,
∴B1A⊥底面ABCD,则B1A⊥BD,
又∵ABCD为正方形,
∴AC⊥BD,则BD⊥平面AB1C,
∴平面AB1C⊥平面BDC1;
(Ⅱ) ∵C1D∥B1A,AB1⊂平面AB1C,C1D⊄平面AB1C,
∴C1D∥平面AB1C,
VC1-AB1C=VD-AB1C=VB1-ACD=
1 |
3 |
1 |
2 |
3 |
| ||
6 |
看了 如图,斜四棱柱ABCD-A1...的网友还看了以下:
[1]若a=-4,则-(-a)=?[2]若-y=3.1,则y+3.1=?[3]-a=-(-3),则 2020-04-09 …
若|a-1|=0,则a的值等于第二题、若|a-1|+|b|=0,则ab的值分别等于?第三题、若|a 2020-05-13 …
一个使我困惑的数学概念,若P、A、B、C为空间不同的四点,且有向量PA=a*向量PB+b*向量PC 2020-05-22 …
已知平面向量a,b满足|a|=1,|b|=2,a与b的夹角为π/3,以a,b为邻边作平行四边形,则 2020-05-23 …
5ab-二分之九a的三次方b-四分之九ab+二分之一a的三次方b-四分之十一ab-a的三次方b-5 2020-05-23 …
在直角坐标系内四个点a(a,1),b(b,1),c(c,-1),d(d,-1),则四边形abcd一 2020-06-03 …
2.已知a,b都是正实数,函数y=2ae^x+b的图像过(0,2)点,则1/a+1/b的最小值是? 2020-06-10 …
两个四元方程,找所有解找到所有无序组合(a,b,c,d),其中他们都是实数,符合这两个方程:a+b 2020-06-19 …
1、求证四个连续整数之积加上1是一个完全平方数.2、若a+b+c=1/a+1/b+1/c=1求证a 2020-06-27 …
名校调研系列卷升级版、名校秘题七年级上<配人教版>…1.a÷b=a×1/b{B分之1},则b的取值 2020-07-08 …