早教吧作业答案频道 -->数学-->
如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.(Ⅰ)求证:平面AB1C⊥平面BDC1;(Ⅱ)求四面体AB1C1C的体积.
题目详情
如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.
(Ⅰ)求证:平面AB1C⊥平面BDC1;
(Ⅱ)求四面体AB1C1C的体积.
(Ⅰ)求证:平面AB1C⊥平面BDC1;
(Ⅱ)求四面体AB1C1C的体积.
▼优质解答
答案和解析
(Ⅰ)证明:如图,
在BAB1中,∵AB=1,BB1=2,∠B1BA=60°,
∴AB12=AB2+BB12-2AB•BB1cos60°=1+4-2×1×2×
=3,
∴AB12+AB2=BB12,
∴B1A⊥AB,
又∵侧面AA1B1B⊥底面ABCD,
∴B1A⊥底面ABCD,则B1A⊥BD,
又∵ABCD为正方形,
∴AC⊥BD,则BD⊥平面AB1C,
∴平面AB1C⊥平面BDC1;
(Ⅱ) ∵C1D∥B1A,AB1⊂平面AB1C,C1D⊄平面AB1C,
∴C1D∥平面AB1C,
VC1-AB1C=VD-AB1C=VB1-ACD=
×
×
=
.
在BAB1中,∵AB=1,BB1=2,∠B1BA=60°,
∴AB12=AB2+BB12-2AB•BB1cos60°=1+4-2×1×2×
1 |
2 |
∴AB12+AB2=BB12,
∴B1A⊥AB,
又∵侧面AA1B1B⊥底面ABCD,
∴B1A⊥底面ABCD,则B1A⊥BD,
又∵ABCD为正方形,
∴AC⊥BD,则BD⊥平面AB1C,
∴平面AB1C⊥平面BDC1;
(Ⅱ) ∵C1D∥B1A,AB1⊂平面AB1C,C1D⊄平面AB1C,
∴C1D∥平面AB1C,
VC1-AB1C=VD-AB1C=VB1-ACD=
1 |
3 |
1 |
2 |
3 |
| ||
6 |
看了 如图,斜四棱柱ABCD-A1...的网友还看了以下:
奥数题四题(sos!)1.设aのb=b分之a+a分之b+二分之一,计算:(1992の996)の(99 2020-03-30 …
已知A={x丨x满足条件P},B={x丨x满足条件B},如果A⊆B,那么p是q的什么条 2020-05-17 …
习题1.4(38页~39页)急用!明天就要交了!需要题目的我可以打出来12.如果a<b,b>0,那 2020-05-17 …
f(x)=(√(aa-xx))÷(|x+b|-b)(b>a>0)如何证明它是奇函数?f(x)=根号 2020-05-21 …
设P(A)=a,P(B)=b.如果AB不相容,求P(AUB)=如果AB相互独立.求P(AUB)=如 2020-06-12 …
一辆汽车从A地开王B地,如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千 2020-06-22 …
一道大学概率论题,高手进A,B,C3人掷骰子,A先掷,如果A掷到6点就算A赢,如果不是则把骰子传给 2020-07-20 …
红、黄、绿、蓝四个圈的周长(单位:厘米)分别用a、b、c、d表示,它们的关系如下:a÷b=b÷c= 2020-07-22 …
在线段AB上存在一点C,满足AC:CB=CB:AB=k.(1)求k的值.(2)如果三条线段a、b、 2020-07-30 …
在线段AB上存在一点C,满足AC:CB=CB:AB=k.(1)求k的值.(2)如果三条线段a、b、 2020-07-30 …