早教吧作业答案频道 -->英语-->
acm题为什么wronganswer啊JohnvonNeumann,b.Dec.28,1903,d.Feb.8,1957,wasaHungarian-Americanmathematicianwhomadeimportantcontributionstothefoundationsofmathematics,logic,quantumphysics,meteorology,science,computers,and
题目详情
acm题为什么wrong answer啊
John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematician who made important contributions to the foundations of mathematics, logic, quantum physics, meteorology, science, computers, and game theory. He was noted for a phenomenal memory and the speed with which he absorbed ideas and solved problems. In 1925 he received a B.S. diploma in chemical engineering from Zurich Institute and in 1926 a Ph.D. in mathematics from the University of Budapest. His Ph.D. dissertation on set theory was an important contribution to the subject. At the age of 20, von Neumann proposed a new definition of ordinal numbers that was universally adopted. While still in his twenties, he made many contributions in both pure and applied mathematics that established him as a mathematician of unusual depth. His Mathematical Foundations of Quantum Mechanics (1932) built a solid framework for the new scientific discipline. During this time he also proved the mini-max theorem of GAME THEORY. He gradually expanded his work in game theory, and with coauthor Oskar Morgenstern he wrote Theory of Games and Economic Behavior (1944).
There are some numbers which can be expressed by the sum of factorials. For example 9, 9 = 1! + 2! + 3! Dr. von Neumann was very interested in such numbers. So, he gives you a number n, and wants you to tell him whether or not the number can be expressed by the sum of some factorials.
Well, it's just a piece of cake. For a given n, you'll check if there are some xi, and let n equal to SUM{xi!} (1 ≤ i ≤ t, t ≥ 1, xi ≥ 0, xi = xj iff. i = j). If the answer is yes, say "YES"; otherwise, print out "NO".
Input
You will get several non-negative integer n (n ≤ 1,000,000) from input. Each one is in a line by itself.
The input is terminated by a line with a negative integer.
Output
For each n, you should print exactly one word ("YES" or "NO") in a single line. No extra spaces are allowed.
Sample Input
9
-1
Sample Output
YES
#include
using namespace std;
int main()
{
int m,n,a[9]={1,2,6,24,120,720,5040,40320,362880},b=0,c=0,d=0,e=0,f=0;
while(n>=0&&cin>>n)
{
for(m=0;m
John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematician who made important contributions to the foundations of mathematics, logic, quantum physics, meteorology, science, computers, and game theory. He was noted for a phenomenal memory and the speed with which he absorbed ideas and solved problems. In 1925 he received a B.S. diploma in chemical engineering from Zurich Institute and in 1926 a Ph.D. in mathematics from the University of Budapest. His Ph.D. dissertation on set theory was an important contribution to the subject. At the age of 20, von Neumann proposed a new definition of ordinal numbers that was universally adopted. While still in his twenties, he made many contributions in both pure and applied mathematics that established him as a mathematician of unusual depth. His Mathematical Foundations of Quantum Mechanics (1932) built a solid framework for the new scientific discipline. During this time he also proved the mini-max theorem of GAME THEORY. He gradually expanded his work in game theory, and with coauthor Oskar Morgenstern he wrote Theory of Games and Economic Behavior (1944).
There are some numbers which can be expressed by the sum of factorials. For example 9, 9 = 1! + 2! + 3! Dr. von Neumann was very interested in such numbers. So, he gives you a number n, and wants you to tell him whether or not the number can be expressed by the sum of some factorials.
Well, it's just a piece of cake. For a given n, you'll check if there are some xi, and let n equal to SUM{xi!} (1 ≤ i ≤ t, t ≥ 1, xi ≥ 0, xi = xj iff. i = j). If the answer is yes, say "YES"; otherwise, print out "NO".
Input
You will get several non-negative integer n (n ≤ 1,000,000) from input. Each one is in a line by itself.
The input is terminated by a line with a negative integer.
Output
For each n, you should print exactly one word ("YES" or "NO") in a single line. No extra spaces are allowed.
Sample Input
9
-1
Sample Output
YES
#include
using namespace std;
int main()
{
int m,n,a[9]={1,2,6,24,120,720,5040,40320,362880},b=0,c=0,d=0,e=0,f=0;
while(n>=0&&cin>>n)
{
for(m=0;m
▼优质解答
答案和解析
7=1!+3!
这个数据你就不对
这个数据你就不对
看了 acm题为什么wrongan...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
m为何值时,经过俩点A(-m,6)B(1.3m)的直线的斜率是12 (2)m为何值时,经过俩点A( 2020-06-27 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
若a+m<m,且a-m>a,则a,m满足的不等式为()A.m<aB.a<0,m<0C.a<m<0D 2020-07-21 …
求自然数m,使得a(m-1),(am)2,a(m+1)+3依次成等差数列这里的上标下标显示不出来第 2020-07-23 …
分数指数运算里为什么规定a^(m/n)=n√(a^m)中m/n必须是最简比书上是这么写的但我觉得这 2020-07-30 …
若m+n=7,mn=12,则m^2-mn+n^2的值是.若m,n为整数,下列各式错误的是.A.a^m 2020-10-30 …
若m+n=7,mn=12,则m^2-mn+n^2的值是.若m,n为整数,下列各式错误的是.A.a^m 2020-10-30 …