早教吧作业答案频道 -->数学-->
(A题)某市经济开发区建有B、C、D三个食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900米,AD=BC=1700米.自来水公司已经修好
题目详情
▼优质解答
答案和解析
(A题)(1)过B、C、D分别作AN的垂线段BH、CF、DG,交AN于H、F、G,BH、CF、DG即为所求的造价最低的管道路线.
图形如图所示.(3分)
(2)(法一)BE=BC-CE=1700-500=1200(米),
AE=
=1500(米),
∵△ABE∽△CFE,
得到:
=
.
∴CF=
=
=300(米).(5分)
∵△BHE∽△CFE,
得到
=
,
∴BH=
=
=720(米).(6分)
∵△ABE∽△DGA,
∴
=
,
∴DG=
=
=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
AB2+BE2 AB2+BE2 AB2+BE22+BE22=1500(米),
∵△ABE∽△CFE,
得到:
=
.
∴CF=
=
=300(米).(5分)
∵△BHE∽△CFE,
得到
=
,
∴BH=
=
=720(米).(6分)
∵△ABE∽△DGA,
∴
=
,
∴DG=
=
=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
CF CF CFAB AB AB=
CE CE CEAE AE AE.
∴CF=
=
=300(米).(5分)
∵△BHE∽△CFE,
得到
=
,
∴BH=
=
=720(米).(6分)
∵△ABE∽△DGA,
∴
=
,
∴DG=
=
=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
CE•AB CE•AB CE•ABAE AE AE=
=300(米).(5分)
∵△BHE∽△CFE,
得到
=
,
∴BH=
=
=720(米).(6分)
∵△ABE∽△DGA,
∴
=
,
∴DG=
=
=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
500×900 500×900 500×9001500 1500 1500=300(米).(5分)
∵△BHE∽△CFE,
得到
=
,
∴BH=
=
=720(米).(6分)
∵△ABE∽△DGA,
∴
=
,
∴DG=
=
=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
CF CF CFBH BH BH=
CE CE CEBE BE BE,
∴BH=
=
=720(米).(6分)
∵△ABE∽△DGA,
∴
=
,
∴DG=
=
=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
BE•CF BE•CF BE•CFCE CE CE=
=720(米).(6分)
∵△ABE∽△DGA,
∴
=
,
∴DG=
=
=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
1200×300 1200×300 1200×300500 500 500=720(米).(6分)
∵△ABE∽△DGA,
∴
=
,
∴DG=
=
=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
AB AB ABDG DG DG=
AE AE AEAD AD AD,
∴DG=
=
=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
AB•AD AB•AD AB•ADAE AE AE=
=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
900×1700 900×1700 900×17001500 1500 1500=1020(米).(9分)
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO11为点O到l的距离,
∴OO11为直角梯形BB11D11D的中位线,
∴2OO11=DD11+BB11=b+d;
同理:2OO11=AA11+CC11=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
图形如图所示.(3分)
(2)(法一)BE=BC-CE=1700-500=1200(米),
AE=
AB2+BE2 |
∵△ABE∽△CFE,
得到:
CF |
AB |
CE |
AE |
∴CF=
CE•AB |
AE |
500×900 |
1500 |
∵△BHE∽△CFE,
得到
CF |
BH |
CE |
BE |
∴BH=
BE•CF |
CE |
1200×300 |
500 |
∵△ABE∽△DGA,
∴
AB |
DG |
AE |
AD |
∴DG=
AB•AD |
AE |
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
AB2+BE2 |
∵△ABE∽△CFE,
得到:
CF |
AB |
CE |
AE |
∴CF=
CE•AB |
AE |
500×900 |
1500 |
∵△BHE∽△CFE,
得到
CF |
BH |
CE |
BE |
∴BH=
BE•CF |
CE |
1200×300 |
500 |
∵△ABE∽△DGA,
∴
AB |
DG |
AE |
AD |
∴DG=
AB•AD |
AE |
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
CF |
AB |
CE |
AE |
∴CF=
CE•AB |
AE |
500×900 |
1500 |
∵△BHE∽△CFE,
得到
CF |
BH |
CE |
BE |
∴BH=
BE•CF |
CE |
1200×300 |
500 |
∵△ABE∽△DGA,
∴
AB |
DG |
AE |
AD |
∴DG=
AB•AD |
AE |
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
CE•AB |
AE |
500×900 |
1500 |
∵△BHE∽△CFE,
得到
CF |
BH |
CE |
BE |
∴BH=
BE•CF |
CE |
1200×300 |
500 |
∵△ABE∽△DGA,
∴
AB |
DG |
AE |
AD |
∴DG=
AB•AD |
AE |
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
500×900 |
1500 |
∵△BHE∽△CFE,
得到
CF |
BH |
CE |
BE |
∴BH=
BE•CF |
CE |
1200×300 |
500 |
∵△ABE∽△DGA,
∴
AB |
DG |
AE |
AD |
∴DG=
AB•AD |
AE |
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
CF |
BH |
CE |
BE |
∴BH=
BE•CF |
CE |
1200×300 |
500 |
∵△ABE∽△DGA,
∴
AB |
DG |
AE |
AD |
∴DG=
AB•AD |
AE |
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
BE•CF |
CE |
1200×300 |
500 |
∵△ABE∽△DGA,
∴
AB |
DG |
AE |
AD |
∴DG=
AB•AD |
AE |
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
1200×300 |
500 |
∵△ABE∽△DGA,
∴
AB |
DG |
AE |
AD |
∴DG=
AB•AD |
AE |
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
AB |
DG |
AE |
AD |
∴DG=
AB•AD |
AE |
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
AB•AD |
AE |
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO1为点O到l的距离,
∴OO1为直角梯形BB1D1D的中位线,
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
900×1700 |
1500 |
所以,B、C、D三厂所建自来水管道的最低造价分别是
720×800=576000(元),300×800=240000(元),1020×800=816000(元) (10分)
法二(设∠AEB=∂,利用三角函数可求得BH、CF、DG的长)
(B题)(1)a+c=b+d.(2分)
证明:连接AC、BD,且AC、BD相交于点O,OO11为点O到l的距离,
∴OO11为直角梯形BB11D11D的中位线,
∴2OO11=DD11+BB11=b+d;
同理:2OO11=AA11+CC11=a+c.
∴a+c=b+d (4分)
(2)不一定成立(5分)
分别有以下情况:
直线l过A点时,c=b+d;
直线l过A点与B点之间时,c-a=b+d;
直线l过B点时,c-a=d;
直线l过B点与D点之间时,a-c=b-d;
直线l过D点时,a-c=b;
直线l过C点与D点之间时,a-c=b+d;
直线l过C点时,a=b+d;
直线l过C点上方时,a+c=b+d. (10分)
看了 (A题)某市经济开发区建有B...的网友还看了以下:
请教在英语里介词under和below都是“在--下面,在---下方”它们在使用时具体有和区别?- 2020-05-12 …
不定式to表目的和现在分词引导的目的状语从句有和区别? 含义上的区别. 2020-05-14 …
1.假丝酵母与霉菌菌丝体有和区别2.在微生物的培养过程中,如果要缩短其生长的延迟期,可以在菌种,培 2020-06-13 …
请问哪位大侠populated和populous两者的区别啊,都是形容词,有和区别呢 2020-07-03 …
genomospecie基因种什么叫基因种,英文是genomospecies.它和咱们平时说的种s 2020-07-21 …
在“小肠的结构模型”制作中,折叠的纸代表小肠结构中的和,它们大大增加了小肠的.若用显微镜观察小肠绒 2020-07-29 …
退思园与苏州园林的区别从园林建筑学的角度来分析,同里的退思园与苏州的诸多园林有和区别呢? 2020-11-12 …
请问墙纸(壁纸)材料——纸基+vinyl它的成分和PVC墙纸有和区别?vinyl 2020-12-02 …
求问reproduce,multiply,breed的区别三者有和区别?查字典以后,我个人的理解是: 2020-12-03 …
鞍部与山谷有和区别?鞍部和山谷都是两边高中间低,那么请问从等高线角度来区分两者,应如何区别它们?谢谢 2020-12-27 …