早教吧作业答案频道 -->数学-->
如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:(1)△ADA′≌△CDE;(2
题目详情
如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.
求证:(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.
求证:(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.
▼优质解答
答案和解析
证明:(1)∵四边形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∴∠A′DE=90°,
根据旋转的方法可得:∠EA′D=45°,
∴∠A′ED=45°,
∴A′D=DE,
在△AA′D和△CED中
,
∴△AA′D≌△CDE(SAS);
(2)∵根据旋转性质以及(1)可得:AC=A′C,∠ACE=∠A′CE,
∴点C在AA′的垂直平分线上,
∵AC是正方形ABCD的对角线,
∴∠CAE=45°,
∵AC=A′C,CD=CB′,
∴AB′=A′D,
在△AEB′和△A′ED中
,
∴△AEB′≌△A′ED(AAS),
∴AE=A′E,
∴点E也在AA′的垂直平分线上,
∴直线CE是线段AA′的垂直平分线.
∴AD=CD,∠ADC=90°,
∴∠A′DE=90°,
根据旋转的方法可得:∠EA′D=45°,
∴∠A′ED=45°,
∴A′D=DE,
在△AA′D和△CED中
|
∴△AA′D≌△CDE(SAS);
(2)∵根据旋转性质以及(1)可得:AC=A′C,∠ACE=∠A′CE,
∴点C在AA′的垂直平分线上,
∵AC是正方形ABCD的对角线,
∴∠CAE=45°,
∵AC=A′C,CD=CB′,
∴AB′=A′D,
在△AEB′和△A′ED中
|
∴△AEB′≌△A′ED(AAS),
∴AE=A′E,
∴点E也在AA′的垂直平分线上,
∴直线CE是线段AA′的垂直平分线.
看了 如图,把正方形ABCD绕点C...的网友还看了以下:
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n设A为 2020-05-15 …
已知a+b+c=H a+b+e=J a+d+e=K b+c+d=M c+d+e=N 求a=?b=? 2020-05-16 …
用以下英文宇母填在上a,a,a,a,a,a,b,e,e,d,e,e,e,e,e,e,f,g,g用以 2020-06-24 …
A,B均为三阶可逆矩阵,且A^3=0,则A:E-A,E+A均不可逆?B:E-A不可逆但E+A可逆? 2020-07-20 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
已知函数y=(e^x-a)^2+(e^(-x)-a)^2(a属于R,a不等于0),求y的最小值Y= 2020-07-21 …
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则()A.E-A不可逆,E+A不可逆B.E-A不 2020-07-22 …
EXCEL循环或计算问题。F=A+B+C+D+E。(A.B.C.D.E.F.均要大于零)E=A*10 2020-11-01 …
a、b和D、E打架,致使a和E轻微伤。现a先起诉E、F,而E另立案起诉a、b。起诉与反诉的问题。a. 2021-01-13 …