早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在△ABC中,∠C=90°,AC=BC,点D在BC边上,连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE,作DF⊥BC交AB于点F.(1)求证:AB⊥BE;(2)若AC=8,DF=3,求BE的长.

题目详情
如图,在△ABC中,∠C=90°,AC=BC,点D在BC边上,连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE,作DF⊥BC交AB于点F.
作业搜
(1)求证:AB⊥BE;
(2)若AC=8,DF=3,求BE的长.
▼优质解答
答案和解析
(1)证明:作EH⊥BC于H,如图,
∵AD绕点D顺时针旋转90°得到DE,作业搜
∴∠ADE=90°,DA=DE,
∴∠ADC+∠EDH=90°,
而∠ADC+∠DAC=90°,
∴∠EDH=∠DAC,
在△ACD和△DHE中
∠C=∠H
∠DAC=∠EDH
AD=DE

∴△ACD≌△DHE,
∴AC=DH,CD=EH,
∵∠C=90°,AC=BC,
∴∠ABC=45°,
∵AC=BC=DH,
∴CD=BH,
∴BH=EH,
∴△BEH为等腰直角三角形,
∴∠EBH=45°,
∴∠ABE=90°,
∴AB⊥BE;
(2) ∵DF⊥BC,∠FBD=45°,
∴△DBF为等腰直角三角形,
∴BD=DF=3,
∵BC=AC=8,
∴CD=5,
由(1)得EH=CD=5,△BEH为等腰直角三角形,
∴BE=
2
EH=5
2