早教吧作业答案频道 -->其他-->
已知椭圆C:x2a2+y2b2=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点.(1)若P(-1,3),PA是⊙O的切线,求椭圆C的方程;(2)是否存在这样的椭圆C,使得PAPF是常数
题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点.
(1)若P(-1,
3
),PA是⊙O的切线,求椭圆C的方程;
(2)是否存在这样的椭圆C,使得
PA
PF
是常数?如果存在,求C的离心率,如果不存在,说明理由.
x2
a2
+
y2
b2
=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点.
(1)若P(-1,
3
),PA是⊙O的切线,求椭圆C的方程;
(2)是否存在这样的椭圆C,使得
PA
PF
是常数?如果存在,求C的离心率,如果不存在,说明理由.
▼优质解答
答案和解析
(1)由点P(-1,3),⊙O的半径为b,则b^2=(-1)^2+3^2=10
又PA是⊙O的切线,A(-a,0),PA垂直于OA
所以:a^2-b^2=(-1+a)^2+(3-0)^2 解得:a=10
因此所求椭圆的方程为x^2/100+y^2/10=1.
(2) 存在这样的椭圆C满足条件;
设⊙O上任意一点P(m,n),则n^2=b^2-m^2,
PA^2/PF^2=[(m+a)^2+n^2]/[(m+c)^2+n^2]
=(m^2+2ma+a^2+b^2-m^2)/(m^2+2mc+c^2+b^2-m^2)
=(2ma+a^2+b^2)/(2mc+c^2+b^2)
=(2am+2a^2-c^2)/(2cm+a^2)
由题意可知若PA/PF为常数存在,则可设PA^2/PF^2=K(K为大于0的常数)
则2am+2a^2-c^2=K(2cm+a^2),整理得:(2a-2cK)m+(2a^2-c^2-Ka^2)=0(*)
因为m是[-b,b]内任意实数 ,方程(*)恒成立
因此:2a-2cK=0且2a^2-c^2-Ka^2=0,从而消去K得c^3-2a^2c+a^3=0
(c^3-a^2c)+(a^3-a^2c)=0,得(a-c)(c^2+ac-a^2)=0
因为a不等于c,所以c^2+ac-a^2=0
解得:c/a=(1/2)[(根号下5)-1]
所以存在这样的椭圆C,其离心率为(1/2)[(根号下5)-1].
又PA是⊙O的切线,A(-a,0),PA垂直于OA
所以:a^2-b^2=(-1+a)^2+(3-0)^2 解得:a=10
因此所求椭圆的方程为x^2/100+y^2/10=1.
(2) 存在这样的椭圆C满足条件;
设⊙O上任意一点P(m,n),则n^2=b^2-m^2,
PA^2/PF^2=[(m+a)^2+n^2]/[(m+c)^2+n^2]
=(m^2+2ma+a^2+b^2-m^2)/(m^2+2mc+c^2+b^2-m^2)
=(2ma+a^2+b^2)/(2mc+c^2+b^2)
=(2am+2a^2-c^2)/(2cm+a^2)
由题意可知若PA/PF为常数存在,则可设PA^2/PF^2=K(K为大于0的常数)
则2am+2a^2-c^2=K(2cm+a^2),整理得:(2a-2cK)m+(2a^2-c^2-Ka^2)=0(*)
因为m是[-b,b]内任意实数 ,方程(*)恒成立
因此:2a-2cK=0且2a^2-c^2-Ka^2=0,从而消去K得c^3-2a^2c+a^3=0
(c^3-a^2c)+(a^3-a^2c)=0,得(a-c)(c^2+ac-a^2)=0
因为a不等于c,所以c^2+ac-a^2=0
解得:c/a=(1/2)[(根号下5)-1]
所以存在这样的椭圆C,其离心率为(1/2)[(根号下5)-1].
看了 已知椭圆C:x2a2+y2b...的网友还看了以下:
圆锥曲线的已知椭圆C:x^2/2+y^2=1的右焦点为F,右准线为l,点A属于l,线段AF交C于点 2020-04-08 …
A是半径为2的圆心O外一点,OA=4,AB是圆心O的切线,点B是切点,旋BC平行OA,连接A这个图 2020-05-13 …
如图,OP是一条射线,OA,OB,OC是三条线段,其中OA=a,OB=b,OC=c,并且∠BOP= 2020-05-16 …
洞内导线应根据洞口投点向洞内作引伸测量,洞口投点应纳入( )内。A.导线点B.控制网C.精度误 2020-05-18 …
已知椭圆C:a^2分之x^2+b^2分之y^2=1(a大于0b大于0)焦点在x轴上它的一个顶点B与 2020-06-21 …
如图,点A、B、C都在圆O上,过点C作AC‖BD交OB延长线于A,连接CD,且角CDB=角OBD= 2020-06-27 …
两个完全相同的凸透镜L1、L2如图放置,其中AO1=O1B=BO2,过A点的一条光线经L1折射后按 2020-07-31 …
两个完全相同的凸透镜L1、L2如图放置,其中AO1=O1B=BO2,过A点的一条光线经L1折射后按 2020-07-31 …
如图,OB是矩形OABC的对角线,点B的坐标为(3,6).D、E分别是OC、OB上的点,OD=5, 2020-08-01 …
关于双焦眼镜子片光学中心位置的描述包括()。A.偏离近视线点B.近视线点C.不在眼镜框内D.1/2顶 2020-08-22 …