早教吧 育儿知识 作业答案 考试题库 百科 知识分享

根据条件,分别求出椭圆的方程:(1)中心在原点,对称轴为坐标轴,离心率为12,长轴长为8;(2)中心在原点,对称轴为坐标轴,焦点在x轴上,短轴的一个顶点B与两个焦点F1,F2组成的

题目详情
根据条件,分别求出椭圆的方程:
(1)中心在原点,对称轴为坐标轴,离心率为
1
2
,长轴长为8;
(2)中心在原点,对称轴为坐标轴,焦点在x轴上,短轴的一个顶点B与两个焦点F1,F2组成的三角形的周长为4+2
3
,且F1BF2=
3
▼优质解答
答案和解析
(1)∵椭圆的长轴长为8,即2a=8,
∴a=4,∵离心率为
1
2
,即e=
c
a
=
1
2
,∴c=2
∵b2=a2-c2,∴b2=16-4=12,
当椭圆焦点在x轴上时,椭圆方程为
x2
16
+
y2
12
=1
当椭圆焦点在y轴上时,椭圆方程为
y2
16
+
x2
12
=1.
所求椭圆方程为:
x2
16
+
y2
12
=1或
y2
16
+
x2
12
=1
(2)设长轴为2a,焦距为2c,则在△F2OB中,由∠F2BO=
π
3
得:c=
3
2
a,
所以△F2OF1的周长为:2a+2c=4+2
3
,∴a=2,c=
3
,∴b2=1
故得:
x2
4
+y2=1.