早教吧作业答案频道 -->数学-->
在四边形ABCD中,∠ABD=∠BCD=RT∠,AB=AC,AE⊥BC于F,交BD于点E,且BD=15,CD=9,点P从A出发沿射线AE方向运动,过P做PQ⊥AB于Q,连接FQ,设AP为x(x>0)(1)求证△ABE∽△BCD(2)求线段AF的长(3)是否存在一点p使
题目详情
在四边形ABCD中,∠ABD=∠BCD=RT∠,AB=AC,AE⊥BC于F,交BD于点E,且BD=15,CD=9,点P从A出发沿射线AE方向运动,过P做PQ⊥AB于Q,连接FQ,设AP为x (x>0)
(1)求证△ABE∽△BCD
(2)求线段AF的长
(3)是否存在一点p 使△PQF是以PF为腰的等腰三角形?若存在,请求出所有满足要求的x的值 若不存在 请说明理由
(1)求证△ABE∽△BCD
(2)求线段AF的长
(3)是否存在一点p 使△PQF是以PF为腰的等腰三角形?若存在,请求出所有满足要求的x的值 若不存在 请说明理由
▼优质解答
答案和解析
(1)∵∠ABD=∠BCD=Rt∠,AF⊥BC
∴AE∥CD
∴∠AEB=∠D
∴△ABE~△BCD
(2)∵BD=15,CD=9
∴CB= √15²−9²=12
∵AB=AC,AF⊥BC
∴BF=FC=6
∵AE∥CD
∴BE=ED=1/2BD=15/2,△ABE∽△BCD
∴ AB/BC= BE/CD
∴AB/12=7.5/9
∴AB=10
在Rt△ABF中,由勾股定理,得
AF= √AB²−BF²=√100−36=8
(3)∵点P从点A出发沿线段AE方向向E点运动
∴P在线段AE上,
当P点在AF上时,使△PQF为等腰三角形,只有PQ=PF.
∵∠AQP=∠AFB∠QAP=∠FAB
∴△QAP~△FAB
∴QP/FB=AP/AB
∴ PQ/6=x/10
∴PQ= 3/5x
∵PF=8-x
∴ 3/5x=8-x
∴x=5
当P在FE上时,使△PQF为等腰三角形,有:
①PQ=PF
∵PQ=3/5x,FP=x-8
∴ 3/5x=x-8
∴x=20>AE=12.5(舍去),
②PQ=FQ
作高线QG,则PG= 1/2PF=1/29(x-8)
∵△PQG~△BAF,
∴PG/BF=PQ/AB
∴ 1/2(x−8)/6=3/5x/10
∴x= 200/7>AE=12.5(舍去)
③PF=FQ
∴∠FQP=∠FPQ,
∵∠AQP=90°.
∴∠FAQ+∠FPQ=∠FQA+∠FQP=90°
∴∠FAQ=∠FQA
∴AF=FQ=PF
∴8=x-8,
∴x=16>AE=12.5(舍去).
∴当x=5时,△PQF为等腰三角形.
∴AE∥CD
∴∠AEB=∠D
∴△ABE~△BCD
(2)∵BD=15,CD=9
∴CB= √15²−9²=12
∵AB=AC,AF⊥BC
∴BF=FC=6
∵AE∥CD
∴BE=ED=1/2BD=15/2,△ABE∽△BCD
∴ AB/BC= BE/CD
∴AB/12=7.5/9
∴AB=10
在Rt△ABF中,由勾股定理,得
AF= √AB²−BF²=√100−36=8
(3)∵点P从点A出发沿线段AE方向向E点运动
∴P在线段AE上,
当P点在AF上时,使△PQF为等腰三角形,只有PQ=PF.
∵∠AQP=∠AFB∠QAP=∠FAB
∴△QAP~△FAB
∴QP/FB=AP/AB
∴ PQ/6=x/10
∴PQ= 3/5x
∵PF=8-x
∴ 3/5x=8-x
∴x=5
当P在FE上时,使△PQF为等腰三角形,有:
①PQ=PF
∵PQ=3/5x,FP=x-8
∴ 3/5x=x-8
∴x=20>AE=12.5(舍去),
②PQ=FQ
作高线QG,则PG= 1/2PF=1/29(x-8)
∵△PQG~△BAF,
∴PG/BF=PQ/AB
∴ 1/2(x−8)/6=3/5x/10
∴x= 200/7>AE=12.5(舍去)
③PF=FQ
∴∠FQP=∠FPQ,
∵∠AQP=90°.
∴∠FAQ+∠FPQ=∠FQA+∠FQP=90°
∴∠FAQ=∠FQA
∴AF=FQ=PF
∴8=x-8,
∴x=16>AE=12.5(舍去).
∴当x=5时,△PQF为等腰三角形.
看了 在四边形ABCD中,∠ABD...的网友还看了以下:
(2012•卢湾区二模)已知数列a,b,c是各项均为正数的等差数列,公差为d(d>0).在a,b之 2020-05-13 …
无穷等比数列{an}的首项a1=1,公比为q,无穷等差数列{bn}的公差d>0,数列{an}前三项 2020-05-15 …
A+.B+.C2+.D-四种简单离子,离子半径大小是:D->B+,B+>A+,B+>C2+,则四种 2020-06-04 …
各项均为正偶数的数列a1,a2,a3,a4中,前三项依次成公差为d(d>0)的等差数列,后三项依次 2020-06-04 …
比如,p:a>1;q:1>a>0.p真q假,a的取值范围?a的取值应该是否q∩p还是否q∪p 2020-07-08 …
等差数列{an}中,an>0,公差为d>0,则有a4•a6>a3•a7,类比上述性质,在等比数列{ 2020-07-09 …
(2012•江苏一模)各项均为正偶数的数列a1,a2,a3,a4中,前三项依次成公差为d(d>0) 2020-07-17 …
等差数列{an}中,an>0,公差为d>0,则有a4•a6>a3•a7,类比上述性质,在等比数列{b 2020-10-31 …
在等差数列{an}中,若an>0,公差d>0,则有a4•a6>a3•a7,类比上述性质,在等比数列{ 2020-10-31 …
在等差数列{an}中,若an>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{ 2020-10-31 …