早教吧作业答案频道 -->数学-->
f(x)=ax^2+bx+c在0,1上满足-1≤f(x)≤1,试求|a|+|b|+|c|的最大值
题目详情
f(x)=ax^2+bx+c在【0,1】上满足-1≤f(x)≤1,试求|a|+|b|+|c|的最大值
▼优质解答
答案和解析
f(1)=a+b+c;
f(0)=c;
f(1/2)=a/4+b/2+c;
得a=-4*f(1/2)+2*f(0)+2*f(1),b=4*f(1/2)-f(1)-3*f(0),c=f(0);
因此|a|+|b|+|c|=|-4*f(1/2)+2*f(0)+2*f(1)|+|4*f(1/2)-f(1)-3*f(0)|+|f(0)|<=|4*f(1/2)|+|2*f(0)|+|2*f(1)|+|4*f(1/2)|+|f(1)|+|3*f(0)|+|f(0)|<=4+2+2+4+1+3+1=17;当且仅当f(1)=f(0)=-f(1/2)=-1(或1)时成立,对应a=-8,b=8,c=-1(或a=8,b=-8,c=1);
f(0)=c;
f(1/2)=a/4+b/2+c;
得a=-4*f(1/2)+2*f(0)+2*f(1),b=4*f(1/2)-f(1)-3*f(0),c=f(0);
因此|a|+|b|+|c|=|-4*f(1/2)+2*f(0)+2*f(1)|+|4*f(1/2)-f(1)-3*f(0)|+|f(0)|<=|4*f(1/2)|+|2*f(0)|+|2*f(1)|+|4*f(1/2)|+|f(1)|+|3*f(0)|+|f(0)|<=4+2+2+4+1+3+1=17;当且仅当f(1)=f(0)=-f(1/2)=-1(或1)时成立,对应a=-8,b=8,c=-1(或a=8,b=-8,c=1);
看了 f(x)=ax^2+bx+c...的网友还看了以下:
f(x)=sin(2x+pi/6)+m写出函数f(x)最小正周期及单调区间(2)x属于[-pi/6 2020-05-13 …
f(x)=x^2+|x-a|+1,x属于R,常数a为R,求f(x)最小值问过一次,还有疑问,上次答 2020-05-23 …
f(x)=x^2+|x-a|+1,x属于R,常数a为R,求f(x)最小值x=a再分别讨论a的取值情 2020-05-23 …
如果实数x,y满足等式(x-2)平方+y平方=3,那么y/x最大值? 2020-06-27 …
谁能具体解释下这个题的含义,知道怎么做但是不理解这个题,fx满足f(x+2)=2f(x)..f(x 2020-07-30 …
圆中y/x最大值已知实数x、y满足(x-2)平方+(y-3)平方=1,求y/x最大值 2020-08-01 …
怎么求256∕x+√x最小值?用基本不等式?求256/x+√x最小值,答案本应当X=64时,得最小 2020-08-03 …
已知对数函数g(x)满足g(e2)=2,设f(x)=g(x)/x.求函数f(x)最大值 2020-10-31 …
函数f(x)=2x^+(x-a)|x-a|,求f(x)最小值f(x)=3(x-a/3)^+2a^/3 2020-11-07 …
已知f(x)=asin(哦米伽x+fai)在同一周期内,x=派/3时,f(x)最大值为2,x=0时, 2020-12-31 …