早教吧作业答案频道 -->数学-->
f(x)=ax^2+bx+c在0,1上满足-1≤f(x)≤1,试求|a|+|b|+|c|的最大值
题目详情
f(x)=ax^2+bx+c在【0,1】上满足-1≤f(x)≤1,试求|a|+|b|+|c|的最大值
▼优质解答
答案和解析
f(1)=a+b+c;
f(0)=c;
f(1/2)=a/4+b/2+c;
得a=-4*f(1/2)+2*f(0)+2*f(1),b=4*f(1/2)-f(1)-3*f(0),c=f(0);
因此|a|+|b|+|c|=|-4*f(1/2)+2*f(0)+2*f(1)|+|4*f(1/2)-f(1)-3*f(0)|+|f(0)|<=|4*f(1/2)|+|2*f(0)|+|2*f(1)|+|4*f(1/2)|+|f(1)|+|3*f(0)|+|f(0)|<=4+2+2+4+1+3+1=17;当且仅当f(1)=f(0)=-f(1/2)=-1(或1)时成立,对应a=-8,b=8,c=-1(或a=8,b=-8,c=1);
f(0)=c;
f(1/2)=a/4+b/2+c;
得a=-4*f(1/2)+2*f(0)+2*f(1),b=4*f(1/2)-f(1)-3*f(0),c=f(0);
因此|a|+|b|+|c|=|-4*f(1/2)+2*f(0)+2*f(1)|+|4*f(1/2)-f(1)-3*f(0)|+|f(0)|<=|4*f(1/2)|+|2*f(0)|+|2*f(1)|+|4*f(1/2)|+|f(1)|+|3*f(0)|+|f(0)|<=4+2+2+4+1+3+1=17;当且仅当f(1)=f(0)=-f(1/2)=-1(或1)时成立,对应a=-8,b=8,c=-1(或a=8,b=-8,c=1);
看了 f(x)=ax^2+bx+c...的网友还看了以下:
跪求1首英文歌曲 !开头是if you want be my friend.1首英文歌曲 !开头是 2020-05-16 …
有一个高为1.1米的正方体水池刚好能装满28桶水,已知水桶是一个圆柱体,...有一个高为1.1米的 2020-05-20 …
求1-1/2sin^2(x/2)的导数.我是这样算的:Y=-1/2*(sinx/2*sinx/2) 2020-06-10 …
小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8m,2.5m且粗细相同的钢管分别为100根 2020-06-20 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
直角三角形1:1:根号2请问各路高手:直角三角形三个角分别为30°60°90°我想问的是:1:1: 2020-07-22 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
求极值和最值一、设z=z(x,y)是由x²-6xy+10y²-2yz-z²+18=0确定的函数,求 2020-07-31 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
计算一道数学题,(1+1/2)×(1+1/3)×(1+1/4)×(1+1/5)×(1+1/6)×(1 2020-11-30 …