早教吧作业答案频道 -->数学-->
f(x)=ax^2+bx+c在0,1上满足-1≤f(x)≤1,试求|a|+|b|+|c|的最大值
题目详情
f(x)=ax^2+bx+c在【0,1】上满足-1≤f(x)≤1,试求|a|+|b|+|c|的最大值
▼优质解答
答案和解析
f(1)=a+b+c;
f(0)=c;
f(1/2)=a/4+b/2+c;
得a=-4*f(1/2)+2*f(0)+2*f(1),b=4*f(1/2)-f(1)-3*f(0),c=f(0);
因此|a|+|b|+|c|=|-4*f(1/2)+2*f(0)+2*f(1)|+|4*f(1/2)-f(1)-3*f(0)|+|f(0)|<=|4*f(1/2)|+|2*f(0)|+|2*f(1)|+|4*f(1/2)|+|f(1)|+|3*f(0)|+|f(0)|<=4+2+2+4+1+3+1=17;当且仅当f(1)=f(0)=-f(1/2)=-1(或1)时成立,对应a=-8,b=8,c=-1(或a=8,b=-8,c=1);
f(0)=c;
f(1/2)=a/4+b/2+c;
得a=-4*f(1/2)+2*f(0)+2*f(1),b=4*f(1/2)-f(1)-3*f(0),c=f(0);
因此|a|+|b|+|c|=|-4*f(1/2)+2*f(0)+2*f(1)|+|4*f(1/2)-f(1)-3*f(0)|+|f(0)|<=|4*f(1/2)|+|2*f(0)|+|2*f(1)|+|4*f(1/2)|+|f(1)|+|3*f(0)|+|f(0)|<=4+2+2+4+1+3+1=17;当且仅当f(1)=f(0)=-f(1/2)=-1(或1)时成立,对应a=-8,b=8,c=-1(或a=8,b=-8,c=1);
看了 f(x)=ax^2+bx+c...的网友还看了以下:
在三角形ABC中,角A,B,C的对边分别为a,b,c,满足(c-2a)cosB bcosC=0在三 2020-04-05 …
A={a,a+b,a+2b}B={a,ac,ac^2}若A=B求c的值 2020-04-05 …
3.在Rt三角形ABC中,角C=90度,abc分别为角A角B角C的对边.(1)已知a=3,b=3, 2020-05-04 …
在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+b)cosC+ccosB=0.(2)求 2020-05-13 …
在△ABC中,角A,B,C的对边分别为a,b,c,已知向量m=(cosB,2cos2C2-1),n 2020-05-13 …
在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a:b=3:4,c 2020-05-14 …
已知锐角三角形ABC中,角A、B、C的对边分别为a,b,c,且tanB=根号3ac除以a^2+c^ 2020-05-16 …
已知A={a,b+a,a+2b}B={a,ac,ac²}A=B 求C的值 2020-05-16 …
设二次函数f(x)=x²+bx+c(b,c∈R),且对任意实数α,β恒有f(sinα)≥0,f(2 2020-05-21 …
已知向量a=﹙﹣2,sina﹚,向量b=﹙cosa,1﹚,a∈‐π∕3,π∕61、是否存在a,是向 2020-05-22 …