早教吧作业答案频道 -->数学-->
证:对任意正整数n,都有1/n+1
题目详情
证:对任意正整数n,都有1/n+1 < ln(1+1/n) <1/n .
▼优质解答
答案和解析
1/n+1 < ln(1+1/n) <1/n
不妨令1/n为x,
即证
x/(x+1) < ln(1+x) 令f(t)=ln(1+t) 0<=t<=x
由拉格朗日中值定理得
存在ξ属于(0,x),使得
f'(ξ)=[ln(1+x)-ln1]/(x-0)=ln(1+x)/x=1/(1+ξ)
ξ=0时最大,ξ=x时最小,即
1>ln(1+x)/x>1/(1+x)
所以
x/(x+1) < ln(1+x) 所以有1/n+1 < ln(1+1/n) <1/n
不妨令1/n为x,
即证
x/(x+1) < ln(1+x)
由拉格朗日中值定理得
存在ξ属于(0,x),使得
f'(ξ)=[ln(1+x)-ln1]/(x-0)=ln(1+x)/x=1/(1+ξ)
ξ=0时最大,ξ=x时最小,即
1>ln(1+x)/x>1/(1+x)
所以
x/(x+1) < ln(1+x)
看了 证:对任意正整数n,都有1/...的网友还看了以下:
已知数列{An}的通项An=(n+1)(10/11)^n,试问该数列有没有最大项,若有,求最大项和 2020-04-27 …
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
当n取正整数时,定义N(n)表示n的最大奇因数.如N(1)=1,N(2)=1,N(3)=3,N(4 2020-05-13 …
二次函数y=n(n+1)X^2-(2n+1)X+1 ,n=1,2,3.时,其图像在X轴上截得线段长 2020-05-16 …
初等数论的几个问题(1)证明:当n是奇数时,3|2^n+1;当n是偶数时,3不能整除2^n+1(2 2020-06-12 …
已知数列{an}得通项公式an=1/n+1+1/n+2+1/n+3+...+1/2n(n∈n*). 2020-07-26 …
已知数列an中,a1=1,an=(2n/n-1)an-1+n(n为大于等于2的正整数),且bn=a 2020-07-28 …
高中数列题(说明:"[]"中内容表示下标)以数列{a[n]}的任意相邻两项为坐标的点P[n](a[ 2020-07-29 …
已知数列an的通项公式是an=2*3^(n-1)+(-1)^n*(ln2-ln3)+(-1)^n* 2020-07-30 …
一道高数题,证明f(x)=(1+1/n)^n单调递增且有上界解法里包括这样一段:将Xn=(1+1/ 2020-07-31 …