早教吧作业答案频道 -->数学-->
数论问题已知奇质数p,当p>3,求证1+1/2+.+1/p-1=A/B.gcd(A,B)=1(即A、B互质),证明p^2|A(A被p的平方整除).
题目详情
数论问题
已知奇质数p,当p>3,求证1+1/2+.+1/p-1=A/B.gcd(A,B)=1(即A、B互质),证明p^2|A(A被p的平方整除).
已知奇质数p,当p>3,求证1+1/2+.+1/p-1=A/B.gcd(A,B)=1(即A、B互质),证明p^2|A(A被p的平方整除).
▼优质解答
答案和解析
首先把1+1/2+.+1/(p-1)首尾配对求和,即利用1/k+1/(p-k) = p/[k(p-k)],可以得到A是p的倍数.
接下去考察2[1+1/2+.+1/(p-1)]/p=(2A/p)/B,把左端写成
1/[1*(p-1)]+1/[2*(p-2)]+...+1/[(p-1)*1]
只需要证明这个数乘上 (p-1)!后是p的倍数即可.
注意(p-1)!/[k(p-k)]和(p-1)!*inv(k)*inv(p-k)关于p同余,这里inv(k)表示k在模p下的乘法逆元(在1,...,p-1中存在唯一的n满足nk=1(mod p),n记为inv(k)),这样
inv(k)*inv(p-k) = inv(-k^2) = -inv(k)^2 (mod p).
由于1,2,...,p-1的逆恰好取遍1,2,...,p-1,所以
inv(1)^2+inv(2)^2+...+inv(p-1)^2=1^2+2^2+...+(p-1)^2=p(p-1)(2p-1)/6,
p>3时这个数确实是p的倍数.
接下去考察2[1+1/2+.+1/(p-1)]/p=(2A/p)/B,把左端写成
1/[1*(p-1)]+1/[2*(p-2)]+...+1/[(p-1)*1]
只需要证明这个数乘上 (p-1)!后是p的倍数即可.
注意(p-1)!/[k(p-k)]和(p-1)!*inv(k)*inv(p-k)关于p同余,这里inv(k)表示k在模p下的乘法逆元(在1,...,p-1中存在唯一的n满足nk=1(mod p),n记为inv(k)),这样
inv(k)*inv(p-k) = inv(-k^2) = -inv(k)^2 (mod p).
由于1,2,...,p-1的逆恰好取遍1,2,...,p-1,所以
inv(1)^2+inv(2)^2+...+inv(p-1)^2=1^2+2^2+...+(p-1)^2=p(p-1)(2p-1)/6,
p>3时这个数确实是p的倍数.
看了 数论问题已知奇质数p,当p>...的网友还看了以下:
初二的数学.开平方1、如果一个正数x的平方等于a,即x^2=a,那么这个正数x就叫做a的,即x=2、 2020-03-30 …
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
怎么证(a+1/a)(b+1/b)大于等于25/4?错解:正解:(a-1)² ≧ 0 欲证原式成立 2020-04-06 …
已知A={X∈R|X^2-2X-8=0},B={X∈R|X^2+aX+a^2-12=0},B是A的 2020-04-25 …
A是一个矩阵,A等于A的逆矩阵(即A=A-1),那么请问A的什么矩阵?A是一个矩阵,A等于A的逆矩 2020-05-13 …
求一道数学题即解答方式题形系甘即a^2+b^2=xx(一个数字)请问呢d题型点做?就是说a^2-b 2020-05-17 …
若x^2+ax+b=0与x^2+cx+d=0有一公共根,那么能否有以下结论:(a+c)x+(b+d 2020-07-09 …
一、已知数集M满足条件:若a∈M,则(1+a)/(1-a)∈M(a≠0,a≠±1)(1)若3∈M, 2020-07-30 …
概率论基础问题(因为无法输入A的逆事件符号,只好用a来表示,即a=1-A)设A,B满足P(A)=1/ 2020-11-29 …
函数f[x]=logaXa大于0,且a不等于1,在2,3上最大值为1,则a=当a大于1时,f(x)图 2021-01-15 …