早教吧作业答案频道 -->数学-->
如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E(1)证明点C在圆O上;(2)求tan∠CDE的值;(3)求圆心O到弦ED的距离.
题目详情
如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E
(1)证明点C在圆O上;
(2)求tan∠CDE的值;
(3)求圆心O到弦ED的距离.
(1)证明点C在圆O上;
(2)求tan∠CDE的值;
(3)求圆心O到弦ED的距离.
▼优质解答
答案和解析
(1)证明:如图1,连结CO.
∵AB=6,BC=8,∠B=90°,
∴AC=10.
又∵CD=24,AD=26,102+242=262,
∴△ACD是直角三角形,∠C=90°.
∵AD为 O的直径,
∴AO=OD,OC为Rt△ACD斜边上的中线,
∴OC=
AD=r,
∴点C在圆O上;
(2) 如图2,延长BC、DE交于点F,∠BFD=90°.
∵∠BFD=90°,
∴∠CDE+∠FCD=90°,
又∵∠ACD=90°,
∴∠ACB+∠FCD=90°,
∴∠CDE=∠ACB.
在Rt△ABC中,tan∠ACB=
=
,
∴tan∠CDE=tan∠ACB=
;
(3) 如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=
AE.
易证△ABC∽△CFD,
∴
=
,即
=
,
∴CF=
,
∴BF=BC+CF=8+
=
.
∵∠B=∠F=∠AED=90°,
∴四边形ABFE是矩形,
∴AE=BF=
,
∴OG=
AE=
,
即圆心O到弦ED的距离为
.
∵AB=6,BC=8,∠B=90°,
∴AC=10.
又∵CD=24,AD=26,102+242=262,
∴△ACD是直角三角形,∠C=90°.
∵AD为 O的直径,
∴AO=OD,OC为Rt△ACD斜边上的中线,
∴OC=
1 |
2 |
∴点C在圆O上;
(2) 如图2,延长BC、DE交于点F,∠BFD=90°.
∵∠BFD=90°,
∴∠CDE+∠FCD=90°,
又∵∠ACD=90°,
∴∠ACB+∠FCD=90°,
∴∠CDE=∠ACB.
在Rt△ABC中,tan∠ACB=
6 |
8 |
3 |
4 |
∴tan∠CDE=tan∠ACB=
3 |
4 |
(3) 如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=
1 |
2 |
易证△ABC∽△CFD,
∴
AB |
CF |
AC |
CD |
6 |
CF |
10 |
24 |
∴CF=
72 |
5 |
∴BF=BC+CF=8+
72 |
5 |
112 |
5 |
∵∠B=∠F=∠AED=90°,
∴四边形ABFE是矩形,
∴AE=BF=
112 |
5 |
∴OG=
1 |
2 |
56 |
5 |
即圆心O到弦ED的距离为
56 |
5 |
看了 如图,在四边形ABCD中,A...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
若函数y=a的x次方+b-1(a大于0且a不等于1)的图像经过第三象限,则一定有A.a大于0小于1 2020-04-05 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
如图所示,一定质量的理想气体,经过图线A→B→C→A的状态变化过程,AB的延长线过O点,CA与纵轴 2020-05-14 …
9.三角形ABC中,若c=√(a²+b²+ab),则角C的度数是()A,60°B,120°C,60 2020-06-03 …
有难度M{A,B,C}==(A+B+C)/3m{A,B,C}=A(A为三数中最小的一个)则若M{A 2020-06-13 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
高二数学题,帮忙解决,要步骤的(1)设a,b,c属于R,a+b+c=0,abc0.(2)设a,b, 2020-07-22 …
如图,已知抛物线m:y=ax2-6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n: 2020-07-25 …
已知正数abc,且a/b+c=b/c+a=c/a+b=k.则在下列四个点中,在正比例函数y=kx图像 2020-11-01 …