早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求证:四边形ABCD有外接圆的充要条件是S=√((p-a)*(p-b)*(p-c)*(p-d))其中a,b,c,d为四边形的四条边长,p为其中a,b,c,d为四边形的四条边长,p为半周长,S为面积.

题目详情
求证:四边形ABCD有外接圆的充要条件是S=√((p-a)*(p-b)*(p-c)*(p-d))其中a,b,c,d为四边形的四条边长,p为
其中a,b,c,d为四边形的四条边长,p为半周长,S为面积.
▼优质解答
答案和解析
在四边形ABCD中,AB=a,BC=b,CD=c,DA=d,设p=1/2(a+b+c+d),∠A+∠C=2θ,四边形面积为S
∵S△ABD=1/2ad×sinA
S△BCD=1/2bc×sinC
∴S=1/2adsinA+1/2bcsinC
4S²=(ad×sinA+bc×sinC)²
而BD²=a²+d²-2ad×cosA
=b²+c²-2bc×cosC
∴ad×cosA-bc×cosC=1/2(b²+c²-a²-d²)
故4S²+1/4(b²+c²-a²-d²)²
=(ad×sinA+bc×sinC)²+(ad×cosA-bc×cosC)²
=a²d²+b²c²-2abcd×cos2θ (2θ=A+C)
=a²d²+b²c²-2abcd(2cos²θ-1)
=(ad+bc)²-4abcd×cos²θ
于是 16S²=4(ad+bc)²-(b²+c²-a²-d²)²-4abcd×cos²θ
=16(p-a)(p-b)(p-c)(p-d)-16abcd×cos²θ
∴S=√[(p-a)(p-b)(p-c)(p-d)-abcd×cos²θ]
四边形ABCD有外接圆的充要条件是对角互补
故四边形ABCD有外接圆的充要条件是S=√((p-a)*(p-b)*(p-c)*(p-d))
看了 求证:四边形ABCD有外接圆...的网友还看了以下: