早教吧作业答案频道 -->数学-->
各项均为正数的等比数列{an}的前n项的和为Sn,若Sn=2,S3n=14,则S4n等于多少
题目详情
各项均为正数的等比数列{an}的前n项的和为Sn,若Sn=2,S3n=14,则S4n等于多少
▼优质解答
答案和解析
Sn,S2n-Sn,S3n-S2n,S4n-S3n成等比数列
2,S2n-2,14-S2n成等比数列
(S2n-2)^2=2(14-S2n)
解得:S2n=-4,S2n=6
∵各项均为正数的等比数列{an}
∴S2n=6
∴2,4,8,S4n-14成等比数列
∴S4n-14=16
即:S4n=30
方法二:
∵S[n]=a[1](1-q^n)/(1-q)=2
S[3n]=a[1][1-q^(3n)]/(1-q)=14
将上面两式相除,得:
1+q^n+q^(2n)=7
q^(2n)+q^n-6=0
∴q^n=2 或者 q^n=-3
∵等比数列{a[n]}各项均正
∴q^n=2
∵S[4n]-S[3n]
={a[1][1-q^(4n)]/(1-q)}-{a[1][1-q^(3n)]/(1-q)}
={a[1](1-q^n)/(1-q)}q^(3n)
=S[n]q^(3n)
∴S[4n]
=S[3n]+S[n]q^(3n)
=14+2*2^3
=30
2,S2n-2,14-S2n成等比数列
(S2n-2)^2=2(14-S2n)
解得:S2n=-4,S2n=6
∵各项均为正数的等比数列{an}
∴S2n=6
∴2,4,8,S4n-14成等比数列
∴S4n-14=16
即:S4n=30
方法二:
∵S[n]=a[1](1-q^n)/(1-q)=2
S[3n]=a[1][1-q^(3n)]/(1-q)=14
将上面两式相除,得:
1+q^n+q^(2n)=7
q^(2n)+q^n-6=0
∴q^n=2 或者 q^n=-3
∵等比数列{a[n]}各项均正
∴q^n=2
∵S[4n]-S[3n]
={a[1][1-q^(4n)]/(1-q)}-{a[1][1-q^(3n)]/(1-q)}
={a[1](1-q^n)/(1-q)}q^(3n)
=S[n]q^(3n)
∴S[4n]
=S[3n]+S[n]q^(3n)
=14+2*2^3
=30
看了 各项均为正数的等比数列{an...的网友还看了以下:
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
数列an为等差数列an=11d=2sn=35则a1=在等比数列an中已知前四项和为1前八项和为17 2020-05-14 …
数列(a n)的前N项和为Sn,满足点(an,Sn)在直线y=2X+1上.1.求数列(an)的通项 2020-05-15 …
设数列{an}的前n项和为Sn,且Sn+1/2an=1(n∈N+),1:求数列{an}的通项公式; 2020-05-17 …
已知数列{an}的前n项和为Sn,且an=Sn*S(n-1)(n≥2,Sn≠0),a1=2/9求证 2020-05-17 …
整数划分问题将以正整数n表示成一系列正整数之和.n=n1+n2+n3+...+nk(n1>=n2> 2020-05-20 …
是GREOG上set3的第14题,看不懂解析.S是所有正整数n的集合,n满足n²同时是24和108 2020-05-22 …
在公差不为零的等差数列{x(n)}和等比数列{y(n)}中,已知x1=1,且x1=y1,x2=y2 2020-06-04 …
数列{an}和{bn}的前n项和分别记为An和Bn,已知an=-n-3/2,4Bn-12An=13 2020-06-06 …
已知等比数列{a(n)}中,a(2)=6,a(5)=162,求数列{a(n)}的通项式;若数列{a 2020-06-07 …