早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求表面积为a^2而体积为最大的长方形的体积.详细过程'简单易懂的拉格朗日乘数的解释'谢谢

题目详情
求表面积为a^2而体积为最大的长方形的体积.详细过程'简单易懂的拉格朗日乘数的解释'谢谢
▼优质解答
答案和解析
体积最大,所以是正方形,所以一个面积:6分之a平方,所以边长为根号6分之a,所以体积为6倍根号六分之a立方设长方体长为x,宽为y,高为z
目标函数f(x,y,z)=xyz
限制条件为g(x,y,z)=2(xy+yz+xz)=a²
即φ(x,y,z)=2(xy+yz+xz)-a²=0
引入拉格朗日乘子λ,构造拉格朗日函数L(x,y,z)=f(x,y,z)+λφ(x,y,z)=xyz+λ[2(xy+yz+xz)-a²]

L'x(x,y,z)=yz+2λ(y+z)=0.(1)
L'y(x,y,z)=xz+2λ(x+z)=0.(2)
L'z(x,y,z)=xy+2λ(x+y)=0.(3)
φ(x,y,z)=2(xy+yz+xz)-a²=0.(4)
由(1)(2)(3)得
x=y=z=4λ
代入(4)得
λ=a/√96=√6a/24
即驻点为P(x,y,z)=P( √6a/24,√6a/24,√6a/24)
唯一驻点,故最值
最大体积V=xyz=8λ^3=√6a^3/2304