早教吧作业答案频道 -->其他-->
设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.(Ⅰ)求k值;(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;(Ⅲ)若f(1)=32,且g(x)=a2x+
题目详情
设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(Ⅰ)求k值;
(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;
(Ⅲ)若f(1)=
,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求实数m的值.
(Ⅰ)求k值;
(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;
(Ⅲ)若f(1)=
3 |
2 |
▼优质解答
答案和解析
(Ⅰ)∵函数f(x)是定义域为R的奇函数,∴f(0)=0,
∴1-(k-1)=0,∴k=2,
经检验知:k=2满足题意;
(Ⅱ)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a−
<0,
又a>0,且a≠1,∴0<a<1,
∵ax单调递减,a-x单调递增,故函数f(x)在R上单调递减.
不等式化为f(x2+tx)<f(x-4),
∴x2+tx>x-4,即x2+(t-1)x+4>0恒成立,
∴△=(t-1)2-16<0,解得-3<t<5.
(Ⅲ)∵f(1)=
,
∴a−
=
,即2a2-3a-2=0,
∴a=2或a=−
(舍去).
∴g(x)=a2x+a-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,
由(Ⅰ)可知f(x)=2x-2-x为增函数,
∵x≥1,∴t≥f(1)=
,
令h(t)=t2−2m+2=(t−m)2+2−m2(t≥
),
若m≥
,当t=m时,h(t)min=2−m2=−2,∴m=2;
若m<
,当t=
时,h(t)min=
−3m=−2,解得m=
>
,故舍去.
综上可知m=2.
∴1-(k-1)=0,∴k=2,
经检验知:k=2满足题意;
(Ⅱ)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a−
1 |
a |
又a>0,且a≠1,∴0<a<1,
∵ax单调递减,a-x单调递增,故函数f(x)在R上单调递减.
不等式化为f(x2+tx)<f(x-4),
∴x2+tx>x-4,即x2+(t-1)x+4>0恒成立,
∴△=(t-1)2-16<0,解得-3<t<5.
(Ⅲ)∵f(1)=
3 |
2 |
∴a−
1 |
a |
3 |
2 |
∴a=2或a=−
1 |
2 |
∴g(x)=a2x+a-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,
由(Ⅰ)可知f(x)=2x-2-x为增函数,
∵x≥1,∴t≥f(1)=
3 |
2 |
令h(t)=t2−2m+2=(t−m)2+2−m2(t≥
3 |
2 |
若m≥
3 |
2 |
若m<
3 |
2 |
3 |
2 |
17 |
4 |
25 |
12 |
3 |
2 |
综上可知m=2.
看了 设函数f(x)=ax-(k-...的网友还看了以下:
1、f(x)=2^(x)+x³ 这个函数为什么是增函数2、函数f(x)对一切实数x,y均有f(x+ 2020-05-16 …
一道高一二次函数题设二次函数f(x)=ax²+bx+c(a,b,c∈R)满足下列条件:1>当x∈R 2020-05-20 …
高一二次函数求值设二次函数f(x)满足下列条件:1,当X属于R时,f(x)的最小值为0,且f(x- 2020-05-21 …
f(x)对任意x∈R,都有f(x+△x)-f(x)/△x>0成立,且f(x)的图像经过A(-1,- 2020-06-11 …
在100张奖券中,有4中奖,从中任取2张,则2张都中奖的概率是已知f(x)的定义域为[0,1],f 2020-06-30 …
构造一个函数,其定义域为(0,1),值域为[0,1],f(x)=x有无穷多个解 2020-07-26 …
1.若f(x+m)=f(x-n)恒成立,则f(x)是周期性函数,周期为(m+n)2.若f(x+m) 2020-07-30 …
数学分析习题设函数f的定义域为R,不恒为0,且对一切x,y∈R满足①f(x+y)=f(x)+f(y) 2020-11-20 …
为什么f(x)可以和f(1/x)或f(-x)互换?f(x)和f(x+1),f(-x),f(1/x)什 2021-01-16 …
已知函数f(x)的定义域为[0,1],F(x)=f(x+a)+(x-a)(a>0)的定义域. 2021-01-31 …