早教吧作业答案频道 -->数学-->
函数f{x}=4∧x-2∧x+1+3的定义域为-1/2,1/2,设t=2∧x,求t得取值范围,求f{x}的定义域
题目详情
函数f{x}=4∧x-2∧x+1+3的定义域为【-1/2,1/2】,设t=2∧x,求t得取值范围,求f{x}的定义域
▼优质解答
答案和解析
f(x)=4^x - 2^(x+1) + 3 =(2^x)^2 -2 * 2^x +1 +2 = [(2^x)-1]^2 + 2的定义域为[-1/2,1/2]
因为:t=2^x 是定义域中的增函数
所以:当x=-1/2时,t取得最小值为(√2)/2
当x=1/2时,t取得最大值为√2
所以:f(t)=(t-1)^2 +2
所以:f(t)的对称轴为t=1
当t=1时,f(t)取得最小值为2
当t=(√2)/2时,f(t)的值为7/2 - √2
当t=√2时,f(t)的值为5-2√2
所以:当t=√2时,f(t)取得最大值.
所以:f(x)=4^x - 2^(x+1) + 3 =(2^x)^2 -2 * 2^x +1 +2 = [(2^x)-1]^2 + 2在[-1/2,0]上为减函数,在[0,1/2]上为增函数
所以:当x=0,即:t=1时f(x)取得最小值为2
当x=1/2,即:t=√2时,f(x)取得最大值5-2√2
所以:f(x)的值域为[2,5-2√2]
因为:t=2^x 是定义域中的增函数
所以:当x=-1/2时,t取得最小值为(√2)/2
当x=1/2时,t取得最大值为√2
所以:f(t)=(t-1)^2 +2
所以:f(t)的对称轴为t=1
当t=1时,f(t)取得最小值为2
当t=(√2)/2时,f(t)的值为7/2 - √2
当t=√2时,f(t)的值为5-2√2
所以:当t=√2时,f(t)取得最大值.
所以:f(x)=4^x - 2^(x+1) + 3 =(2^x)^2 -2 * 2^x +1 +2 = [(2^x)-1]^2 + 2在[-1/2,0]上为减函数,在[0,1/2]上为增函数
所以:当x=0,即:t=1时f(x)取得最小值为2
当x=1/2,即:t=√2时,f(x)取得最大值5-2√2
所以:f(x)的值域为[2,5-2√2]
看了 函数f{x}=4∧x-2∧x...的网友还看了以下:
关于x的分式方程x-x分之一=t-t分之一的解为x1=t,x2=﹣t分之一:x+x分之一=t+t分 2020-05-01 …
看一道函数解答题(超简单的)已知f(x+1)=x^2+2x,求f(x)令x+1=t,则t=x-1所 2020-06-06 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
matlab求解微分方程方程如下:x''(t)+x'(t)+x(t)-4*x(t)^2+3*x(t 2020-07-20 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
f(x)=e^x+∫tf(t)dt-x∫f(t)dt解f'(x)=e^x+xf(x)-∫f(t)d 2020-07-31 …
换元法的原理例如f(x+1)=(x+1)^2+(x+1)+2求f(x),令t=x+1,则f(t)= 2020-08-01 …
用换元法求函数解析式的疑问:为什么求出f(t)后,就直接是f(x)了呢?x和t不是有关系且不等吗已 2020-08-01 …