早教吧作业答案频道 -->数学-->
函数f{x}=4∧x-2∧x+1+3的定义域为-1/2,1/2,设t=2∧x,求t得取值范围,求f{x}的定义域
题目详情
函数f{x}=4∧x-2∧x+1+3的定义域为【-1/2,1/2】,设t=2∧x,求t得取值范围,求f{x}的定义域
▼优质解答
答案和解析
f(x)=4^x - 2^(x+1) + 3 =(2^x)^2 -2 * 2^x +1 +2 = [(2^x)-1]^2 + 2的定义域为[-1/2,1/2]
因为:t=2^x 是定义域中的增函数
所以:当x=-1/2时,t取得最小值为(√2)/2
当x=1/2时,t取得最大值为√2
所以:f(t)=(t-1)^2 +2
所以:f(t)的对称轴为t=1
当t=1时,f(t)取得最小值为2
当t=(√2)/2时,f(t)的值为7/2 - √2
当t=√2时,f(t)的值为5-2√2
所以:当t=√2时,f(t)取得最大值.
所以:f(x)=4^x - 2^(x+1) + 3 =(2^x)^2 -2 * 2^x +1 +2 = [(2^x)-1]^2 + 2在[-1/2,0]上为减函数,在[0,1/2]上为增函数
所以:当x=0,即:t=1时f(x)取得最小值为2
当x=1/2,即:t=√2时,f(x)取得最大值5-2√2
所以:f(x)的值域为[2,5-2√2]
因为:t=2^x 是定义域中的增函数
所以:当x=-1/2时,t取得最小值为(√2)/2
当x=1/2时,t取得最大值为√2
所以:f(t)=(t-1)^2 +2
所以:f(t)的对称轴为t=1
当t=1时,f(t)取得最小值为2
当t=(√2)/2时,f(t)的值为7/2 - √2
当t=√2时,f(t)的值为5-2√2
所以:当t=√2时,f(t)取得最大值.
所以:f(x)=4^x - 2^(x+1) + 3 =(2^x)^2 -2 * 2^x +1 +2 = [(2^x)-1]^2 + 2在[-1/2,0]上为减函数,在[0,1/2]上为增函数
所以:当x=0,即:t=1时f(x)取得最小值为2
当x=1/2,即:t=√2时,f(x)取得最大值5-2√2
所以:f(x)的值域为[2,5-2√2]
看了 函数f{x}=4∧x-2∧x...的网友还看了以下:
f(X)=lg[x平方+(k+2)x+4]定义域为R,求k的取值范围f(X)=lg[x平方+(K+ 2020-04-27 …
f(x)=ax2+bx+c 若a=1,c=0.且|f(x)|≤1在区间(0,1]上恒成立.求b的取 2020-05-14 …
恒成立f(x)=根号下kx的平方-kx+1定义域为R求k的范围f(x)=根号下kx的平方-kx+1 2020-06-03 …
若y=f(x)的图像过(-3,2)(1,-2),求使-2≤f(x+1)≤2成立的x范围f(x)在定 2020-06-11 …
对于函数f(x)=log1/2(ax^2-2x+4)(a属于R)若f(x)的值域为(-∞,1],求 2020-06-27 …
定义在R上的偶函数f(x)在(﹣∞,0]上单调递增,若f(a+1)<f(2a-1),求a的取值范围 2020-07-08 …
老师今天讲了抽象函数的三种基本类型,如下,我知道问题有点怪,但还请老师帮忙解决比如最基本的f(x) 2020-07-11 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
二次函数..已知f(x)是二次函数若f(x)=0,且f(x)+x+1=f(x+1),试求f(x)的表 2020-12-08 …
定义函数取值范围[a,b]如果值域在[a,b]则称函数在[a,b]上是保值函数f(x)=x^2在[0 2020-12-31 …