早教吧 育儿知识 作业答案 考试题库 百科 知识分享

基本不等式求最值的问题若x>0,求函数y=2x/x²+1的最大值已知0<x<1,求函数y=1/x+1/1-x的最小值

题目详情
基本不等式求最值的问题

若x>0,求函数y=2x/x²+1的最大值

已知0<x<1,求函数y=1/x+1/1-x的最小值


▼优质解答
答案和解析
解1由y=2x/x²+1
=2/(x+1/x)
知求函数y=2x/x²+1的最大值
即求t=x+1/x的最小值
由t=x+1/x≥2√x×1/x=2
即x+1/x≥2.当且仅当x=1时等号成立.
即1/(x+1/x)≤1/2
知2/(x+1/x)≤1
即y≤1
故函数y=2x/x²+1的最大值为1,
2由
y=1/x+1/(1-x)
=[1/x+1/(1-x)]×1
=[1/x+1/(1-x)]×[x+(1-x)]
=1+1+x/(1-x)+(1-x)/x
≥2+2√x/(1-x)×(1-x)/x
=2+2
=4.当且仅当x=1/2时等号成立
故函数y=1/x+1/1-x的最小值为4.
看了 基本不等式求最值的问题若x>...的网友还看了以下: