早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,△abc等腰直角三角形,∠acb=90°,m、n为斜边ab上的两点,满足AM^2+BN^2=MN^2,求∠mcn的度数

题目详情
如图,△abc等腰直角三角形,∠acb=90°,m、n为斜边ab上的两点,满足AM^2+BN^2=MN^2,求∠mcn的度数
▼优质解答
答案和解析
∠mcn=45°
过点b 作be⊥ab,垂足为b,在be上取一点d,使bd=am
三角形cbd≌三角形cam
cd=cm,∠bcd=∠acm
在直角三角形bdn中,有
bd^2+bn^2=nd^2
am^2+bn^2=mn^2
nd=mn
三角形ncd≌三角形ncm
∠mcn=∠ncd
∠ncd=∠bcn+∠bcd=∠bcn+∠acm
∠mcn+∠bcn+∠acm=90°
∠mcn=90°/2=45°