早教吧作业答案频道 -->其他-->
如图,在三棱锥P-ABC中,△ABC是边长等于2的正三角形,且∠PCA=∠PCB.(Ⅰ)求证:PC⊥AB;(Ⅱ)设正△ABC的中心为O,△PAB的重心为G,求证:OG∥平面PAC;(Ⅲ)当侧面PBC⊥底面ABC时,二
题目详情
如图,在三棱锥P-ABC中,△ABC是边长等于2的正三角形,且∠PCA=∠PCB.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)设正△ABC的中心为O,△PAB的重心为G,求证:OG∥平面PAC;
(Ⅲ)当侧面PBC⊥底面ABC时,二面角P-AB-C与二面角A-PC-B的大小恰好相等.
①求证:PC⊥底面ABC;
②求二面角A-PB-C的正切值.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)设正△ABC的中心为O,△PAB的重心为G,求证:OG∥平面PAC;
(Ⅲ)当侧面PBC⊥底面ABC时,二面角P-AB-C与二面角A-PC-B的大小恰好相等.
①求证:PC⊥底面ABC;
②求二面角A-PB-C的正切值.
▼优质解答
答案和解析
(Ⅰ)证明:作AB的中点E,连结PE,CE,
∵BC=AC,∠PCA=∠PCB,PC=PC,
∴△PBC≌△PAC,
∴PB=PA,
∴PE⊥AB,
∵AC=BC,E为AB的中点,
∴CE⊥AB,
∵CE⊂平面PEC,PE⊂平面PEC,PE∩CE=E,
∴AB⊥平面PEC,
∵PC⊂平面PEC,
∴PC⊥AB;
(Ⅱ)△PAB的重心为G,△ABC的中心为O,且PE,CE分别为△PAB,△ABC的中线,
∴G,O分别在PE,CE上,
∴
=
=
,
∴OG∥PC,
∵PC⊂平面APC,OG⊄平面APC,
∴OG∥平面PAC.
(Ⅲ)①作BC的中点F,连结AF,
∵AB=AC,
∴AF⊥BC,
∵面PBC⊥底面ABC,面PBC∩底面ABC=BC,
∴AF⊥平面BCP,
∵PC⊂平面BCP,
∴AF⊥PC,
∵PC⊥AB,AB∩AF=A,AB⊂平面ABC,AF⊂平面ABC,
∴PC⊥平面ABC.
②∵PC⊥平面ABC.
∴PC⊥AC,PC⊥BC,
∴∠ACB为二面角A-PC-B,
∵PE⊥AB,CE⊥AB,
∴∠PEC为平面APB和平面ABC的二面角,
∴∠PEC=∠ACB=60°,
∴在Rt△PEC中,PC=tan60°•EC=3,
∴BP=
=
,
作FH⊥PB,连结AH,
∵AE⊥平面BCP,
∴BP⊥AE,
∴BP⊥平面AFH,
∵AH⊂平面AFH,
∴BP⊥AH,
∴二面角A-PB-C为∠AHF,
∵∠CBP=∠PBC,∠FHB=∠PCB=90°,
∴△BFH∽△BPC,
∴
=
,
∴FH=
•PC=
×3=
,
∴在Rt△AFH中,tan∠AHF=
=
∵BC=AC,∠PCA=∠PCB,PC=PC,
∴△PBC≌△PAC,
∴PB=PA,
∴PE⊥AB,
∵AC=BC,E为AB的中点,
∴CE⊥AB,
∵CE⊂平面PEC,PE⊂平面PEC,PE∩CE=E,
∴AB⊥平面PEC,
∵PC⊂平面PEC,
∴PC⊥AB;
(Ⅱ)△PAB的重心为G,△ABC的中心为O,且PE,CE分别为△PAB,△ABC的中线,
∴G,O分别在PE,CE上,
∴
EG |
GP |
1 |
2 |
EO |
OC |
∴OG∥PC,
∵PC⊂平面APC,OG⊄平面APC,
∴OG∥平面PAC.
(Ⅲ)①作BC的中点F,连结AF,
∵AB=AC,
∴AF⊥BC,
∵面PBC⊥底面ABC,面PBC∩底面ABC=BC,
∴AF⊥平面BCP,
∵PC⊂平面BCP,
∴AF⊥PC,
∵PC⊥AB,AB∩AF=A,AB⊂平面ABC,AF⊂平面ABC,
∴PC⊥平面ABC.
②∵PC⊥平面ABC.
∴PC⊥AC,PC⊥BC,
∴∠ACB为二面角A-PC-B,
∵PE⊥AB,CE⊥AB,
∴∠PEC为平面APB和平面ABC的二面角,
∴∠PEC=∠ACB=60°,
∴在Rt△PEC中,PC=tan60°•EC=3,
∴BP=
BC2+PC2 |
13 |
作FH⊥PB,连结AH,
∵AE⊥平面BCP,
∴BP⊥AE,
∴BP⊥平面AFH,
∵AH⊂平面AFH,
∴BP⊥AH,
∴二面角A-PB-C为∠AHF,
∵∠CBP=∠PBC,∠FHB=∠PCB=90°,
∴△BFH∽△BPC,
∴
BF |
BP |
FH |
PC |
∴FH=
BF |
BP |
1 | ||
|
3
| ||
13 |
∴在Rt△AFH中,tan∠AHF=
AF |
FH |
|
看了 如图,在三棱锥P-ABC中,...的网友还看了以下:
数学14455555圆A:(x+2)^2+y^2=1与点A(-2,0),B(2,0),分别说明满足 2020-05-12 …
matlab拟合那个是常数项啊?A=[1 21.22 14.53 17.74 4.95 5.36 2020-05-14 …
一质量分布均匀的矩形板边长分别为a和2a,重力为G,如图,再将它竖直立起来的过程中,推力做功至少为 2020-07-01 …
抛掷一枚均匀骰子,记“骰子向上的点数是偶数”为事件A,向上的点是事件B求(1)P(A)(2)P(B 2020-07-15 …
设m=a+2/a+3,n=a+1/a+2,p=a/a+1.若a<-3,则M,P,N的大小关系是? 2020-07-20 …
圆心A和圆心B是外离两圆,圆心A的半径为4,圆心B的半径为2,AB=8,P在AB上,PC切圆心A于 2020-07-26 …
已知多项式3x^3+ax^2+bx+1能被x^2+1且商式是3x+1,求(-a)^b的值急,还有一 2020-07-30 …
抛物线与双曲线的交点问题将抛物线方程y^2=2px(p>0)代入双曲线方程x^2/a^2-y^2/ 2020-08-01 …
请教三角形的几个己和恒等式的证明设I,O分别是三角形ABC的内心与外心,p为半周长,a、b、c为边 2020-08-03 …
问一道矩阵的问题A是n阶实对称矩阵,且A^2=0,证明A=0书上的证法是:因为A是实对称矩阵,A必可 2020-11-03 …