早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足a1=2,(an+1−an)g(an)+f(an)=0,bn=910(n+2)(an−1)(Ⅰ)证明:数列{an-1}是等比数列;(Ⅱ)当n取何值时,bn取最大值,并求出最大值.

题目详情
已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足a1=2,(an+1−an)g(an)+f(an)=0,bn=
9
10
(n+2)(an−1)
(Ⅰ)证明:数列{an-1}是等比数列;
(Ⅱ)当n取何值时,bn取最大值,并求出最大值.
▼优质解答
答案和解析
(Ⅰ)证明:∵(an+1-an)g(an)+f(an)=0,f(an)=(an−1)2,g(an)=10(an-1).
∴(an+1-an)×10(an-1)+(an−1)2=0,化为(an-1)(10an+1-9an-1)=0.
又a1=2,可知:对任意的n∈N*,an-1≠0.
∴10an+1-9an-1=0,化为10(an+1-1)=9(an-1).
an+1−1
an−1
9
10

∴数列{an-1}是以a1-1=1为首项,
9
10
为公比的等比数列.
(Ⅱ)由(Ⅰ)可知:an−1=1×(
9
10
)n−1,
bn=
9
10
(n+2)×(
9
10
)n−1=(n+2)×(
9
10
)n.
bn+1
bn
=
(n+3)×(
9
10
)n+1
(n+2)(
9
10
)n
=
9
10
×(1+
1
n+2
).
当n=7时,
b8
b7
9
10
×
10
9
=1,即b8=b7
当n<7时,
bn+1
bn
>1,bn+1>bn
当n>7时,
bn+1
bn
<1,bn+1<bn
∴当n=7或8时,b8=b7=
98
107
取得最大值.