已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足a1=2,(an+1−an)g(an)+f(an)=0,bn=910(n+2)(an−1)(Ⅰ)证明:数列{an-1}是等比数列;(Ⅱ)当n取何值时,bn取最大值,并求出最大值.
已知f(x)=(x-1)
2,g(x)=10(x-1),数列{a
n}满足
a1=2,(an+1−an)g(an)+f(an)=0,bn=(n+2)(an−1)
(Ⅰ)证明:数列{an-1}是等比数列;
(Ⅱ)当n取何值时,bn取最大值,并求出最大值.
答案和解析
(Ⅰ)证明:∵(a
n+1-a
n)g(a
n)+f(a
n)=0,f(a
n)=
(an−1)2,g(an)=10(an-1).
∴(an+1-an)×10(an-1)+(an−1)2=0,化为(an-1)(10an+1-9an-1)=0.
又a1=2,可知:对任意的n∈N*,an-1≠0.
∴10an+1-9an-1=0,化为10(an+1-1)=9(an-1).
∴=,
∴数列{an-1}是以a1-1=1为首项,为公比的等比数列.
(Ⅱ)由(Ⅰ)可知:an−1=1×()n−1,
∴bn=(n+2)×()n−1=(n+2)×()n.
∴==×(1+).
当n=7时,=×=1,即b8=b7;
当n<7时,>1,bn+1>bn;
当n>7时,<1,bn+1<bn.
∴当n=7或8时,b8=b7=取得最大值.
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
为什么n(n+1)(n+2)可拆成1/4[n(n+1)(n+2)(n+3)-(n-1)n(n+1) 2020-06-22 …
n为非0自然数,试证n^13n定能被2730整除.2730=2*3*5*7*13,n^13-n=n 2020-07-22 …
若n为合数,n|x^2-1,则gcd(x+1,n)|ngcd(x-1,n)|n且gcd(x+1,n 2020-07-30 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …