早教吧作业答案频道 -->数学-->
如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E. (1)求证:△ABF∽△COE;(2)当O为AC的中点,ACAB=2时,如图2,求OFOE的值;(3)当O为AC边中
题目详情
如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.
(1)求证:△ABF∽△COE;
(2)当O为AC的中点,
=2
(1)求证:△ABF∽△COE;
(2)当O为AC的中点,
AC |
AB |
▼优质解答
答案和解析
(1)证明:∵AD⊥BC,
∴∠DAC+∠C=90°.
∵∠BAC=90°,
∴∠BAF=∠C.
∵OE⊥OB,
∴∠BOA+∠COE=90°,
∵∠BOA+∠ABF=90°,
∴∠ABF=∠COE.
∴△ABF∽△COE.
(2)过O作AC垂线交BC于H,则OH∥AB,
由(1)得∠ABF=∠COE,∠BAF=∠C.
∴∠AFB=∠OEC,
∴∠AFO=∠HEO,
而∠BAF=∠C,
∴∠FAO=∠EHO,
∴△OEH∽△OFA,
∴OF:OE=OA:OH
又∵O为AC的中点,OH∥AB.
∴OH为△ABC的中位线,
∴OH=
∴∠DAC+∠C=90°.
∵∠BAC=90°,
∴∠BAF=∠C.
∵OE⊥OB,
∴∠BOA+∠COE=90°,
∵∠BOA+∠ABF=90°,
∴∠ABF=∠COE.
∴△ABF∽△COE.
(2)过O作AC垂线交BC于H,则OH∥AB,
由(1)得∠ABF=∠COE,∠BAF=∠C.
∴∠AFB=∠OEC,
∴∠AFO=∠HEO,
而∠BAF=∠C,
∴∠FAO=∠EHO,
∴△OEH∽△OFA,
∴OF:OE=OA:OH
又∵O为AC的中点,OH∥AB.
∴OH为△ABC的中位线,
∴OH=
1 |
2 |
看了 如图1,在Rt△ABC中,∠...的网友还看了以下:
√a^2-2a+1+√36-12a+a^2=10-|b+3|-|b-2|根号是包括式子的,分得特别 2020-05-17 …
已知abc是三角形abc的三边长,且满足a^2*c^2-b^2*c^2=a^4-b^4判断三角形a 2020-06-08 …
容器A中盛有浓度为a%的农药溶液m升,容器B中盛有浓度为b%的同类药液m升(a大于b),现将A中药 2020-06-14 …
已知,平面直角坐标系内,点A(a,0),B(b,2),C(0,2),且a、b是方程组2a+b=13 2020-06-19 …
[线性代数]秩与线性相关1,(a1,a2,b1,b2,b3)=132130211100000000 2020-06-30 …
高中函数题:设f(x)=x/e^x,a≠b,f(a)=f(b),比较a+b与2的大小我是这么想的但 2020-07-13 …
已知(a,b)=12,[a,b]=180:(1)a=60,b=36;(2)a=12,b=180正确 2020-07-16 …
高中数学1若非零向量a、b满足|a|=|b|,(2a+b).b=0则a与b的夹角为?不明白答案中2 2020-07-30 …
求解题目十字相乘法分解因式1.a^3-5a^2-6a=2.y^2-8y+7=3.x^2*y^2-6 2020-08-03 …
1.若a=10,b=8,c=6,则a、b、2c的第四比例为,a、b的比例中项x=.2.若(2-x) 2020-08-03 …