早教吧作业答案频道 -->数学-->
如图,三角形ABC中,角ACB=90度,以AC为一边在三角形ABC作等边三角形ACD,过点D作DE垂直于AC,垂足为F,DE
题目详情
如图,三角形ABC中,角ACB=90度,以AC为一边在三角形ABC作等边三角形ACD,过点D作DE垂直于AC,垂足为F,DE
▼优质解答
答案和解析
(1)根据题意得出∠AFE=∠ACE=90°可得出出EF∥BC,再由点F是AC的中点可得出点E是斜边AB的中点,继而利用直角三角形的斜边中线的性质可得出所证得结论.
(2)根据轴对称求最短路径的知识可得,点C关于DE的对称点和点B的连线与DE的交点即是点P的位置,结合图形及(1)可得点P的位置即是点E的位置,从而可求出此时△PBC的周长.(1)∵DE⊥AC,∠ACB=90°,
∴EF∥BC,
又∵ADC是等腰三角形,
∴点F是AC的中点(等腰三角形的三线合一的性质),
∴EF是△ABC的中位线,即可得点E是斜边AB的中点,
∴在RT△ABC中可得,AE=CE=BE;
(2)∵△ABC中,∠ACB=90°,AB=15cm,BC=9cm,
∴AC= AB2-BC2= 152-92=12,
∵AD=CD=10cm,DE⊥AC,
∴F是AC的中点,
∴EF= 12BC= 12×9=4.5,AF= 12AC= 12×12=6,
∴DF= AD2-AF2= 102-62=8,
∴DE=DF+EF=8+4.5=12.5cm,
根据轴对称求最短路径的知识,可得当点P与点E重合的时候PB+PC最小,也即△PBC的周长最小,
此时PB=PC= 12AB= 152,即DP=DE=12.5cm时,△PBC的周长最小,
∴△PBC的最小周长=PB+PC+BC=15+9=24cm.点评:本题考查利用轴对称求最短路径的知识,与实际结合的比较紧,有一定的综合性,解答本题(2)的关键是利用轴对称的性质确定点P的位置.
(2)根据轴对称求最短路径的知识可得,点C关于DE的对称点和点B的连线与DE的交点即是点P的位置,结合图形及(1)可得点P的位置即是点E的位置,从而可求出此时△PBC的周长.(1)∵DE⊥AC,∠ACB=90°,
∴EF∥BC,
又∵ADC是等腰三角形,
∴点F是AC的中点(等腰三角形的三线合一的性质),
∴EF是△ABC的中位线,即可得点E是斜边AB的中点,
∴在RT△ABC中可得,AE=CE=BE;
(2)∵△ABC中,∠ACB=90°,AB=15cm,BC=9cm,
∴AC= AB2-BC2= 152-92=12,
∵AD=CD=10cm,DE⊥AC,
∴F是AC的中点,
∴EF= 12BC= 12×9=4.5,AF= 12AC= 12×12=6,
∴DF= AD2-AF2= 102-62=8,
∴DE=DF+EF=8+4.5=12.5cm,
根据轴对称求最短路径的知识,可得当点P与点E重合的时候PB+PC最小,也即△PBC的周长最小,
此时PB=PC= 12AB= 152,即DP=DE=12.5cm时,△PBC的周长最小,
∴△PBC的最小周长=PB+PC+BC=15+9=24cm.点评:本题考查利用轴对称求最短路径的知识,与实际结合的比较紧,有一定的综合性,解答本题(2)的关键是利用轴对称的性质确定点P的位置.
看了 如图,三角形ABC中,角AC...的网友还看了以下:
如图,在梯形ABCD中,AB‖CD,∠BAD=90°,以AD为直径的半圆O与BC相切.(2)若A 2020-05-01 …
已知抛物线y=ax^2-2x+c与它的对称轴相交与点A(1,-4),与y轴交于点C,与x轴正半轴交 2020-05-16 …
菱形纸片ABCD中,角A=60°,将纸片折叠,点A,D分别落在A' D'处,且A' D'经过B E 2020-05-16 …
没图三角形顶角C,左下角A,右下角B,点D、E是线段AB的三等份点点D、E是线段AB的三等份点⑴过 2020-05-20 …
下图表示一个细胞完成个体发育的过程。(1)A-D过程是通过完成的。(2)白血病是造血系统的恶性肿瘤 2020-07-02 …
如图在四边形ABCD中,角B=∠D=90角a比角c=1比2AB=2CD=1四边形ABCD是一个直角 2020-08-01 …
如图为碳元素在生态系统中循环的模式图,图中甲、乙、丙表示生态系统的生物成分,箭头表示生理过程.下列相 2020-11-22 …
在四边形ABCD中,∠A,∠D的角平分线交于点F,∠B,∠C的角平分线交于点E,求∠E+∠的度数 2020-12-23 …
如图为水稻的几种不同的育种方法示意图,下列相关分析错误的是()A.经A→D过程和A→B→C过程都可选 2021-01-02 …
已知抛物线Y=ax2-2x+c与它的对称轴相较于点A(1,-4),与Y轴相交于C,与Y轴正半轴交于B 2021-01-10 …