早教吧作业答案频道 -->其他-->
高中数学立体几何定理.公式
题目详情
高中数学立体几何定理.公式
▼优质解答
答案和解析
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.
(1)判定直线在平面内的依据
(2)判定点在平面内的方法
公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 .
(1)判定两个平面相交的依据
(2)判定若干个点在两个相交平面的交线上
公理3:经过不在一条直线上的三点,有且只有一个平面.(1)确定一个平面的依据
(2)判定若干个点共面的依据
推论1:经过一条直线和这条直线外一点,有且仅有一个平面.(1)判定若干条直线共面的依据
(2)判断若干个平面重合的依据
(3)判断几何图形是平面图形的依据
推论2:经过两条相交直线,有且仅有一个平面.
推论3:经过两条平行线,有且仅有一个平面.
立体几何 直线与平面
空 间 二 直 线 平行直线
公理4:平行于同一直线的两条直线互相平行
等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等.
异面直线
空 间 直 线 和 平 面 位 置 关 系
(1)直线在平面内——有无数个公共点
(2)直线和平面相交——有且只有一个公共点
(3)直线和平面平行——没有公共点
立体几何 直线与平面
直线与平面所成的角
(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角
(2)一条直线垂直于平面,定义这直线与平面所成的角是直角
(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角
三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直
三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直
空间两个平面 两个平面平行 判定
性质
(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行
(2)垂直于同一直线的两个平面平行
(1)两个平面平行,其中一个平面内的直线必平行于另一个平面
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行
(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面
相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面
二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角
平面角是直角的二面角叫做直二面角
两平面垂直 判定
性质
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面
(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内
立体几何 多面体、棱柱、棱锥
多面体
定义 由若干个多边形所围成的几何体叫做多面体.
棱柱 斜棱柱:侧棱不垂直于底面的棱柱.
直棱柱:侧棱与底面垂直的棱柱.
正棱柱:底面是正多边形的直棱柱.
棱锥 正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥.
球
到一定点距离等于定长或小于定长的点的集合.
欧拉定理
简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2
(1)判定直线在平面内的依据
(2)判定点在平面内的方法
公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 .
(1)判定两个平面相交的依据
(2)判定若干个点在两个相交平面的交线上
公理3:经过不在一条直线上的三点,有且只有一个平面.(1)确定一个平面的依据
(2)判定若干个点共面的依据
推论1:经过一条直线和这条直线外一点,有且仅有一个平面.(1)判定若干条直线共面的依据
(2)判断若干个平面重合的依据
(3)判断几何图形是平面图形的依据
推论2:经过两条相交直线,有且仅有一个平面.
推论3:经过两条平行线,有且仅有一个平面.
立体几何 直线与平面
空 间 二 直 线 平行直线
公理4:平行于同一直线的两条直线互相平行
等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等.
异面直线
空 间 直 线 和 平 面 位 置 关 系
(1)直线在平面内——有无数个公共点
(2)直线和平面相交——有且只有一个公共点
(3)直线和平面平行——没有公共点
立体几何 直线与平面
直线与平面所成的角
(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角
(2)一条直线垂直于平面,定义这直线与平面所成的角是直角
(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角
三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直
三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直
空间两个平面 两个平面平行 判定
性质
(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行
(2)垂直于同一直线的两个平面平行
(1)两个平面平行,其中一个平面内的直线必平行于另一个平面
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行
(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面
相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面
二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角
平面角是直角的二面角叫做直二面角
两平面垂直 判定
性质
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面
(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内
立体几何 多面体、棱柱、棱锥
多面体
定义 由若干个多边形所围成的几何体叫做多面体.
棱柱 斜棱柱:侧棱不垂直于底面的棱柱.
直棱柱:侧棱与底面垂直的棱柱.
正棱柱:底面是正多边形的直棱柱.
棱锥 正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥.
球
到一定点距离等于定长或小于定长的点的集合.
欧拉定理
简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2
看了 高中数学立体几何定理.公式...的网友还看了以下:
常吉高速公路地处湘西山区,穿山越水跨沟壑,隧道和桥梁数量与里程在湖南高速公路中位居第一,其中特大、 2020-06-11 …
矩形截面的惯性矩为什么是宽*高的立方*十二分之一,有谁能写出其推导公式,矩形惯性矩的公式为:1/1 2020-06-12 …
高难度因式分解可用分组分解法提取公因式法十字相乘法因式法平方差公式完全平方公式立方差公式等.求14 2020-06-13 …
初一多项式立方求解公式(a+b)的立方和(a-b)的立方求解公式 2020-06-14 …
常吉高速公路地处大湘西山区,穿山越水跨沟壑,隧道和桥梁数量与里程在湖南高速公路中位居第一,其中特大 2020-06-17 …
翻译句子##公司将于##正式成立,届时将召开公司成立大会,我们诚挚邀请您的参加。共同见证##公司成 2020-06-29 …
高一数学、化学新入门两个小问题立方差、和公式,立方差a³-b³=(a-b)(a²+ab+b²)立方 2020-07-31 …
常吉高速公路地处大湘西山区,穿山越水跨沟壑,隧道和桥梁数量与里程在湖南高速公路中位居第一,其中特大、 2020-11-27 …
立方怎么算?我们在争论一个问题,有一个长0.99米宽0.32米高0.42米得水箱请问他的立方是多少? 2020-12-23 …
在高速公路的两旁每1千米设立一个大路标,每100米设立一个小路标,设立有大路标之处不再设立小路标.设 2020-12-27 …