早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.(Ⅰ)求证:AF⊥平面CBF;(Ⅱ)求三棱锥C-OEF的体积;(Ⅲ)求二面角的E-BC-F大小.

题目详情
如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)求三棱锥C-OEF的体积;
(Ⅲ)求二面角的E-BC-F大小.
▼优质解答
答案和解析
(Ⅰ)∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,
∴CB⊥平面ABEF,
∵AF⊂平面ABEF,∴AF⊥CB,…(3分)
又∵AB为圆O的直径,∴AF⊥BF,
∵CB∩BF=B,∴AF⊥平面CBF.…(6分)
(Ⅱ)由(I)知CB⊥平面ABEF,即CB⊥OEF,
∴三棱锥C-OEF的高是CB,可得CB=AD=1,…(8分)
连结0E、0F,可知0E=0F=EF=1
∴△OEF为正三角形,∴正△OEF的高等于
3
2
,…(10分)
∴VC-OEF=
1
3
S△0EF×CB=
1
3
×(
1
2
×
3
2
×1)×1=
3
12
,…(10分)
( III)∵CB⊥平面ABEF,BE⊂平面ABEF,BF⊂平面ABEF
∴CB⊥BE且CB⊥BF,可得∠EBF就是二面角E-BC-F的平面角
∵圆O中,∠EBF是圆周角,∠E0F是圆心角,且两个角对同弧
∴∠EBF=
1
2
∠E0F=30°
因此,二面角的E-BC-F大小等于30°