早教吧作业答案频道 -->其他-->
如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.(Ⅰ)求证:AF⊥平面CBF;(Ⅱ)求三棱锥C-OEF的体积;(Ⅲ)求二面角的E-BC-F大小.
题目详情
如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)求三棱锥C-OEF的体积;
(Ⅲ)求二面角的E-BC-F大小.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)求三棱锥C-OEF的体积;
(Ⅲ)求二面角的E-BC-F大小.
▼优质解答
答案和解析
(Ⅰ)∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,
∴CB⊥平面ABEF,
∵AF⊂平面ABEF,∴AF⊥CB,…(3分)
又∵AB为圆O的直径,∴AF⊥BF,
∵CB∩BF=B,∴AF⊥平面CBF.…(6分)
(Ⅱ)由(I)知CB⊥平面ABEF,即CB⊥OEF,
∴三棱锥C-OEF的高是CB,可得CB=AD=1,…(8分)
连结0E、0F,可知0E=0F=EF=1
∴△OEF为正三角形,∴正△OEF的高等于
,…(10分)
∴VC-OEF=
S△0EF×CB=
×(
×
×1)×1=
,…(10分)
( III)∵CB⊥平面ABEF,BE⊂平面ABEF,BF⊂平面ABEF
∴CB⊥BE且CB⊥BF,可得∠EBF就是二面角E-BC-F的平面角
∵圆O中,∠EBF是圆周角,∠E0F是圆心角,且两个角对同弧
∴∠EBF=
∠E0F=30°
因此,二面角的E-BC-F大小等于30°
∴CB⊥平面ABEF,
∵AF⊂平面ABEF,∴AF⊥CB,…(3分)
又∵AB为圆O的直径,∴AF⊥BF,
∵CB∩BF=B,∴AF⊥平面CBF.…(6分)
(Ⅱ)由(I)知CB⊥平面ABEF,即CB⊥OEF,
∴三棱锥C-OEF的高是CB,可得CB=AD=1,…(8分)
连结0E、0F,可知0E=0F=EF=1
∴△OEF为正三角形,∴正△OEF的高等于
| ||
2 |
∴VC-OEF=
1 |
3 |
1 |
3 |
1 |
2 |
| ||
2 |
| ||
12 |
( III)∵CB⊥平面ABEF,BE⊂平面ABEF,BF⊂平面ABEF
∴CB⊥BE且CB⊥BF,可得∠EBF就是二面角E-BC-F的平面角
∵圆O中,∠EBF是圆周角,∠E0F是圆心角,且两个角对同弧
∴∠EBF=
1 |
2 |
因此,二面角的E-BC-F大小等于30°
看了 如图,AB为圆O的直径,点E...的网友还看了以下:
在三棱锥P-ABC中PA垂直于面ABCPA=2AB=AC=4点D、E、F分别为BCABAB的中点, 2020-05-13 …
立体几何求解在四棱椎P-ABCD中,PA垂直平面ABCD.BA垂直AD.CD垂直AD.CD=2AB 2020-06-21 …
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A 2020-07-20 …
这个微分方程怎么解!r(t)^2+3r(t)^1+2r(t)=e(t)^2+2e(t)^1+e(t 2020-07-23 …
如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长AB=1,E是PC的中点 2020-07-29 …
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,A点 2020-07-30 …
(2014•海珠区一模)如图,四棱锥P-ABCD中,底面ABCD为正方形,PA=PD,PA⊥平面P 2020-07-31 …
一道关于求二面角的题在底面为平行四边形的四楞锥P-ABCD中,AB⊥AC,PA⊥面ABCD,且PA 2020-07-31 …
limn→+00,e的n分之1次方*(1-e)除以n*(1-e的n分之1次方)=e-1是怎么算来的? 2020-12-17 …
求y=(x²-x)e^(1-x)的导数?后面是e的(1-x)次方.结果是不是(2x-1)e^(1-x 2021-02-16 …