早教吧作业答案频道 -->数学-->
证明sin(a+b)-sina=2sinb/2*cos(a+b/2)
题目详情
证明sin(a+b)-sina=2sinb/2*cos(a+b/2)
▼优质解答
答案和解析
证明:sin(a+b)-sina=sin[(a+b/2)+b/2]-sin[(a+b/2)-b/2]
=sin(a+b/2)*cos(b/2)+cos(a+b/2)*sin(b/2)-[sin(a+b/2)*cos(b/2)-cos(a+b/2)*sin(b/2)]
=2sin(b/2)*cos(a+b/2)
=sin(a+b/2)*cos(b/2)+cos(a+b/2)*sin(b/2)-[sin(a+b/2)*cos(b/2)-cos(a+b/2)*sin(b/2)]
=2sin(b/2)*cos(a+b/2)
看了 证明sin(a+b)-sin...的网友还看了以下: