早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设P是抛物线Y^2=4X上的一个动点 设P是抛物线Y^2=4X上的一个动点,求点P到点A(-1,1)的距离与点P到直线X=-1的距离之和的最小值

题目详情
设P是抛物线Y^2=4X上的一个动点
设P是抛物线Y^2=4X上的一个动点,求点P到点A(-1,1)的距离与点P到直线X=-1的距离之和的最小值
▼优质解答
答案和解析
易知,抛物线y^2=4x的焦点F(1,0),其准线是x=-1.点P到准线的距离d=|PF|.又点A(-1,1))在准线上,连结点AF,交抛物线的交点即是点P.点易知,d+|PA|=|AF|.===>最小值=|AF|=√5..