早教吧 育儿知识 作业答案 考试题库 百科 知识分享

三角函数6个诱导公式的推导公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαk∈zcos(2kπ+α)=cosαk∈ztan(2kπ+α)=tanαk∈zcot(2k

题目详情
三角函数6个诱导公式的推导
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
  sin(2kπ+α)=sinα k∈z
  cos(2kπ+α)=cosα k∈z
  tan(2kπ+α)=tanα k∈z
  cot(2kπ+α)=cotα k∈z
  公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)=-sinα k∈z
  cos(π+α)=-cosα k∈z
  tan(π+α)=tanα k∈z
  cot(π+α)=cotα k∈z
  公式三:任意角α与 -α的三角函数值之间的关系:
  sin(-α)=-sinα
  cos(-α)=cosα
  tan(-α)=-tanα
  cot(-α)=-cotα
  公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)=sinα
  cos(π-α)=-cosα
  tan(π-α)=-tanα
  cot(π-α)=-cotα
  公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)=-sinα
  cos(2π-α)=cosα
  tan(2π-α)=-tanα
  cot(2π-α)=-cotα
  公式六:π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)=cosα
  cos(π/2+α)=-sinα
  tan(π/2+α)=-cotα
  cot(π/2+α)=-tanα
  sin(π/2-α)=cosα
  cos(π/2-α)=sinα
  tan(π/2-α)=cotα
  cot(π/2-α)=tanα
这些公式的推导,尽量用数学知识来推导,少用文字描述
▼优质解答
答案和解析
这是记忆三角函数诱导公式的口诀.例如计算:sin240;tan240
sin240=sin(180+60)=-sin60;
sin240=sin(270-30)=-cos30.
以上的180度是90度的偶数(2)倍,结果仍然是原来的函数(正弦),
而270度是90度的奇数(3)倍,结果就变成了原函数的余函数(余弦),
因为原来的角240度是第三项限的角,原函数的符号是负的.
“奇变偶不变”是说,角前面的度数是90度的倍数.如果是偶数,则函数名称不变,如果是奇数,则要变成它的余函数(正、余弦互相变,正、余切互相变,正、余割互相变)
“符号看象限”是说,要服从原来的角所在的象限中原来函数的符号.