早教吧作业答案频道 -->数学-->
函数y=sin(θ-π/2)cos(θ+π/2),θ∈[0,2π/3]的最小值
题目详情
函数y=sin(θ-π/2)cos(θ+π/2),θ∈[0,2π/3]的最小值
▼优质解答
答案和解析
y=sin(θ-π/2)cos(θ+π/2)
=-sin(π/2-θ)cos(π/2+θ)
=cosθsinθ
=(sin2θ)/2
θ∈[0,2π/3],2θ∈[0,4π/3],-√2/2≤sin2θ≤1
所以 -√2/4≤y≤1/2
则y最小值为-√2/4
=-sin(π/2-θ)cos(π/2+θ)
=cosθsinθ
=(sin2θ)/2
θ∈[0,2π/3],2θ∈[0,4π/3],-√2/2≤sin2θ≤1
所以 -√2/4≤y≤1/2
则y最小值为-√2/4
看了 函数y=sin(θ-π/2)...的网友还看了以下: