早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知a向量=(cos(2x-π/3),sin(x-π/4),b向量=(1,2sin(x+π/4)),函数f(x)=a向量×b向量 (1)求f(x)的对称抽方程(2)求f(x)在区间[-π/12,π/2]上的值域.

题目详情
已知a向量=(cos(2x-π/3),sin(x-π/4),b向量=(1,2sin(x+π/4)),函数f(x)=a向量×b向量 (1)求f(x)的对称抽方程(2)求f(x)在区间[-π/12,π/2]上的值域.
▼优质解答
答案和解析
(1)∵f(x)=a·b
∴f(x)=cos(2x-π/3)×1+sin(x-π/4)×2sin(x+π/4)
=1/2 cos2x+√3/2sin2x+2[﹙√2/2sinx﹚²-﹙√2/2cosx﹚²]
=1/2 cos2x+√3/2sin2x-cos2x
=√3/2sin2x-1/2cos2x
=sin(2x-π/6)
∴2x-π/6=π/2+kπ,k∈z
解得x=π/3+kπ/2,k∈z
∴对称轴为x=π/3+kπ/2,k∈z
(2)∵-π/12≤x≤π/2
∴-π/6≤2x≤π,
-π/3≤2x-π/6≤5π/6
-√3/2≤sin(2x-π/6)≤1,
∴f(x)在区间[-π/12,π/2]上的值域为[-√3/2,1]