早教吧作业答案频道 -->其他-->
(2014•邳州市二模)如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.(1)请求出抛物线顶点M的坐标(用含m的代数式表示)及A、B两点的坐标;(2)经探究可知,△BCM与
题目详情
(2014•邳州市二模)如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.
(1)请求出抛物线顶点M的坐标(用含m的代数式表示)及A、B两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出此时m的值;如果不存在,请说明理由.
(1)请求出抛物线顶点M的坐标(用含m的代数式表示)及A、B两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出此时m的值;如果不存在,请说明理由.
▼优质解答
答案和解析
(1)∵y=mx2-2mx-3m=m(x-1)2-4m.
∴M(1,-4m).
当y=0,mx2-2mx-3m=0,
解得x1=-1,x2=3,
∴A(-1,0),B(3,0);
(2)当x=0时,y=-3m,
∴C(0,-3m).
∴S△ABC=
×2×|−3m|=6m.
过点M作MD⊥x轴于点D,则OD=1,BD=2,MD=4m.
∴S△BCM=SBDM+SOCMD-S△OBC=
×2×4m+
(3m+4m)×1−
×3×3m=3m.
∴S△BCM:S△ABC=1:2.
(3)过点C作CN⊥DM于点N,则CM2=m2+1,BC2=9m2+9,BM2=16m2+4.
①当∠BMC=90°时,CM2+BM2=BC2,即1+m2+4+16m2=9m2+9,
解得:m1=
,m2=−
(舍去).
②当∠BCM=90°时,BC2+CM2=BM2,即9m2+9+m2+1=16m2+4.
解得:m1=1,m2=-1(舍去).
③当∠CBM=90°时,BC2+BM2=CM2,即9m2+9+16m2+4=m2+1.
此方程无解.
综上所述,存在m=
或m=1,存在使△BCM为直角三角形的抛物线.
∴M(1,-4m).
当y=0,mx2-2mx-3m=0,
解得x1=-1,x2=3,
∴A(-1,0),B(3,0);
(2)当x=0时,y=-3m,
∴C(0,-3m).
∴S△ABC=
1 |
2 |
过点M作MD⊥x轴于点D,则OD=1,BD=2,MD=4m.
∴S△BCM=SBDM+SOCMD-S△OBC=
1 |
2 |
1 |
2 |
1 |
2 |
∴S△BCM:S△ABC=1:2.
(3)过点C作CN⊥DM于点N,则CM2=m2+1,BC2=9m2+9,BM2=16m2+4.
①当∠BMC=90°时,CM2+BM2=BC2,即1+m2+4+16m2=9m2+9,
解得:m1=
| ||
2 |
| ||
2 |
②当∠BCM=90°时,BC2+CM2=BM2,即9m2+9+m2+1=16m2+4.
解得:m1=1,m2=-1(舍去).
③当∠CBM=90°时,BC2+BM2=CM2,即9m2+9+16m2+4=m2+1.
此方程无解.
综上所述,存在m=
| ||
2 |
看了 (2014•邳州市二模)如图...的网友还看了以下:
如果线段AB=13㎝MA+MB=17㎝下列说法正确的是()A.M点在线段AB上B.M点在如果线段A 2020-04-27 …
若将数轴折叠,使得A点与-3表示的点重合,则B点与数()表示的点重合若数轴上M、N两点之间的距离为 2020-05-13 …
如图所示,实线表示电场线,虚线表示只受电场力作用的带电粒子的运动轨迹,粒子先经过M点,再经过N点. 2020-05-15 …
在河湾处M点有一个观察站,观察员要从M点出发,先到AB岸,再到CD岸然后返回M点.画出该船应该走的 2020-06-19 …
下图表示“500百帕等压面空间高度分布图”,图中数值表示等压面高度,据此回答下题.1)与M点同高度 2020-07-03 …
设椭圆方程X^2+Y^2/4=1,过点M(0,1)的直线L交椭圆于A,B,O是坐标原点,点P满足O 2020-07-31 …
M点为数轴上的表示-1的点,将M沿着数轴向右平移3个单位到N点,则N点表示. 2020-11-17 …
两列频率相同的水波发生干涉的示意图如图所示,实线表示波峰,虚线表示波谷,M点是实线相交的一点,N点是 2020-12-15 …
两列水波发生干涉,在某时刻,M点是波峰与波峰相遇处,N点是波谷与波谷相遇处,P点的位移为零,Q点是波 2020-12-15 …
两列水波发生干涉,在某时刻,M点是波峰与波峰相遇处,N点是波谷与波谷相遇处,P点的位移为零,Q点是波 2020-12-27 …