早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,A、B分别是x轴和y轴上的点,以AB为直径作⊙M,过M点作AB的垂线交⊙M于点C,C在双曲线y=kx(x<0)上,若OA-OB=4,则k的值是.

题目详情
如图,A、B分别是x轴和y轴上的点,以AB为直径作⊙M,过M点作AB的垂线交⊙M于点C,C在双曲线y=
k
x
(x<0)上,若OA-OB=4,则k的值是______.
▼优质解答
答案和解析
作CD⊥x轴于D,CE⊥y轴于E,连结AC、BC,如图,
∵AB为⊙M的直径,
∴∠ACB=90°,
又∵CM⊥AB,
∴△ACB为等腰直角三角形,
∴CA=CB,AB=
2
BC,
∵∠CAO=∠CBO,
∵在△ACD和△BCE中
∠ADC=∠BEC
∠CAD=∠CBE
AC=BC

∴△ACD≌△BCE(AAS),
∴CD=CE,
设C点坐标为(-t,t),A点坐标为(a,0),B点坐标为(0,b),
∵OA-OB=4,即-a-(-b)=4,
∴a=b-4,
∴a2=(b-4)2=b2-8b+16①,
∵AB2=a2+b2,BC2=CE2+BE2
1
2
(a2+b2)=t2+(t-b)2②,
由①②得t2-4-bt+2b=0,
∴(t+2)(t-2)-b(t-2)=0,
∴(t-2)(t+2-b)=0,
而t+2-b≠0,
∴t-2=0,解得t=2,
∴C点坐标为(-2,2),
把C(-2,2)代入y=
k
x
得k=-2×2=-4.
故答案为-4.