早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(12分)有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计)。有人应用数学知识作如下设计:在钢板的四个角处各切去一个全等的小正方形

题目详情
(12分)有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计)。有人应用数学知识作如下设计:在钢板的四个角处各切去一个全等的小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长。
(1)请你求出这种切割、焊接而成的长方体容器的最大容积
(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积
▼优质解答
答案和解析
(1)当 时, 取最大值  ;
(2)重新设计方案如下:

如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求.

本试题主要是考查了导数在研究函数中的运用。求解最值问题。
(1)因为设切去正方形边长为 x ,则焊接成的长方体的底面边长为 ,高为 x
,然后求解导数来判定单调性得到极值,进而求解最值。
(2)在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求
(1)设切去正方形边长为 x ,则焊接成的长方体的底面边长为 ,高为 x
                          ……(2分)
.                                ……(3分)
时, 是关于 x 的增函数;
时, 是关于 x 的减函数.
∴当 时, 取最大值                                        ……(7分)
(2)重新设计方案如下:

如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求.……(12分)
看了 (12分)有一块边长为4的正...的网友还看了以下: