早教吧作业答案频道 -->数学-->
∫(1+x^2)^3/2dx=?没多少积分了,请各位大侠多包涵.∫(1+x^2)^(-3/2)dx=?呢
题目详情
∫(1+x^2)^3/2dx=?没多少积分了,请各位大侠多包涵.
∫(1+x^2)^(-3/2)dx=?呢
∫(1+x^2)^(-3/2)dx=?呢
▼优质解答
答案和解析
令x = tany,dx = sec²y dy
J = ∫ (1 + x²)^(3/2) dx
= ∫ (1 + tan²y)^(3/2) (sec²y dy)
= ∫ (sec²y)^(3/2) * sec²y dy,恒等式1 + tan²x = sec²x
= ∫ [secy]^5 dy ...(★)
= ∫ sec³y d(tany)
= sec³y tany - ∫ tany d(sec³y)
= sec³y tany - ∫ tany 3sec²y secy tany dy
= sec³y tany - 3∫ tan²y sec³y dy
= sec³y tany - 3∫ (sec²y - 1)sec³y dy
=> J = sec³y tany - 3J + 3K
K = ∫ sec³y dy = ∫ secy d(tany)
= secy tany - ∫ tany d(secy)
= secy tany - ∫ tany secy tany dy
= secy tany - ∫ (sec²y - 1)secy dy
= secy tany - K + ∫ secy dy
2K = secy tany + ∫ secy dy
K = (1/2)secy tany + (1/2)ln|secy + tany|
∴J = sec³y tany - 3J + 3K
4J = sec³y tany + (3/2)secy tany + (3/2)ln|secy + tany|
J = (1/4)sec³y tany + (3/8)secy tany + (3/8)ln|secy + tany| + C
= (1/4)x(1 + x²)^(3/2) + (3/8)x√(1 + x²) + (3/8)ln|x + √(1 + x²)| + C
不想做得这么复杂的话,在(★)处可用降幂公式:
∫ [secy]^n dy = [siny (secy)^(n - 1)]/(n - 1) + [(n - 2)/(n - 1)]∫ [secy]^(n - 2) dy,代入n = 5和n = 3后就计算到了
case 2 简单得多.
∫ (1 + x²)^(-3/2) dx,x = tany,dx = sec²y dy
= ∫ (1 + tan²y)^(-3/2) sec²y dy
= ∫ (sec²y)^(-3/2) sec²y dy
= ∫ 1/sec³y * sec²y dy
= ∫ cosy dy
= siny + C
= x/√(1 + x²) + C
J = ∫ (1 + x²)^(3/2) dx
= ∫ (1 + tan²y)^(3/2) (sec²y dy)
= ∫ (sec²y)^(3/2) * sec²y dy,恒等式1 + tan²x = sec²x
= ∫ [secy]^5 dy ...(★)
= ∫ sec³y d(tany)
= sec³y tany - ∫ tany d(sec³y)
= sec³y tany - ∫ tany 3sec²y secy tany dy
= sec³y tany - 3∫ tan²y sec³y dy
= sec³y tany - 3∫ (sec²y - 1)sec³y dy
=> J = sec³y tany - 3J + 3K
K = ∫ sec³y dy = ∫ secy d(tany)
= secy tany - ∫ tany d(secy)
= secy tany - ∫ tany secy tany dy
= secy tany - ∫ (sec²y - 1)secy dy
= secy tany - K + ∫ secy dy
2K = secy tany + ∫ secy dy
K = (1/2)secy tany + (1/2)ln|secy + tany|
∴J = sec³y tany - 3J + 3K
4J = sec³y tany + (3/2)secy tany + (3/2)ln|secy + tany|
J = (1/4)sec³y tany + (3/8)secy tany + (3/8)ln|secy + tany| + C
= (1/4)x(1 + x²)^(3/2) + (3/8)x√(1 + x²) + (3/8)ln|x + √(1 + x²)| + C
不想做得这么复杂的话,在(★)处可用降幂公式:
∫ [secy]^n dy = [siny (secy)^(n - 1)]/(n - 1) + [(n - 2)/(n - 1)]∫ [secy]^(n - 2) dy,代入n = 5和n = 3后就计算到了
case 2 简单得多.
∫ (1 + x²)^(-3/2) dx,x = tany,dx = sec²y dy
= ∫ (1 + tan²y)^(-3/2) sec²y dy
= ∫ (sec²y)^(-3/2) sec²y dy
= ∫ 1/sec³y * sec²y dy
= ∫ cosy dy
= siny + C
= x/√(1 + x²) + C
看了 ∫(1+x^2)^3/2dx...的网友还看了以下:
定积分证明证明:定积分f(x^2+a^2/x^2)dx/x积分限是1到a等于定积分f(x+a^2/ 2020-06-14 …
求通解两边对什么积分以前俩边积分f(x)=g(x)对X积分ff(x)dx=ff(x)dx对yff( 2020-06-17 …
当x=0时怎么确定∫(积分上限为x积分下线为0)f(t)dt的定义域中包括x=0设f(x)是奇函数 2020-06-26 …
请教各位大侠x³+x²+ax+b能被x²-3x+2整除,则a=,b=. 2020-07-03 …
关于周期问题的高数选择和一道比大小(1)f(x)是以T为周期的可微函数,下列也是以T为周期的函数是 2020-07-07 …
2x对X的积分等于多少?2x1x0分别对X积分,各等于多少 2020-07-21 …
函数、积分、0值设函数f(x)在0,派上连续,且∫f(x)sinxdx=0,∫f(x)cosxdx 2020-07-31 …
微分方程xy'-ylny=0的通解为()答案是y=e的cx次方分离变量,然后积分,其中有一步答案上 2020-08-02 …
积分∫dx/x积分区间[-1,1]是否存在是所谓广义积分么?那应该=多少急需我是高中学生。不过函数在 2020-11-22 …
定积分求面积例一求y^2=2x与y=x-4时图形会分为x轴上下两部分以x积分要分为两个区间相加例二y 2020-11-28 …