早教吧作业答案频道 -->数学-->
∫(1+x^2)^3/2dx=?没多少积分了,请各位大侠多包涵.∫(1+x^2)^(-3/2)dx=?呢
题目详情
∫(1+x^2)^3/2dx=?没多少积分了,请各位大侠多包涵.
∫(1+x^2)^(-3/2)dx=?呢
∫(1+x^2)^(-3/2)dx=?呢
▼优质解答
答案和解析
令x = tany,dx = sec²y dy
J = ∫ (1 + x²)^(3/2) dx
= ∫ (1 + tan²y)^(3/2) (sec²y dy)
= ∫ (sec²y)^(3/2) * sec²y dy,恒等式1 + tan²x = sec²x
= ∫ [secy]^5 dy ...(★)
= ∫ sec³y d(tany)
= sec³y tany - ∫ tany d(sec³y)
= sec³y tany - ∫ tany 3sec²y secy tany dy
= sec³y tany - 3∫ tan²y sec³y dy
= sec³y tany - 3∫ (sec²y - 1)sec³y dy
=> J = sec³y tany - 3J + 3K
K = ∫ sec³y dy = ∫ secy d(tany)
= secy tany - ∫ tany d(secy)
= secy tany - ∫ tany secy tany dy
= secy tany - ∫ (sec²y - 1)secy dy
= secy tany - K + ∫ secy dy
2K = secy tany + ∫ secy dy
K = (1/2)secy tany + (1/2)ln|secy + tany|
∴J = sec³y tany - 3J + 3K
4J = sec³y tany + (3/2)secy tany + (3/2)ln|secy + tany|
J = (1/4)sec³y tany + (3/8)secy tany + (3/8)ln|secy + tany| + C
= (1/4)x(1 + x²)^(3/2) + (3/8)x√(1 + x²) + (3/8)ln|x + √(1 + x²)| + C
不想做得这么复杂的话,在(★)处可用降幂公式:
∫ [secy]^n dy = [siny (secy)^(n - 1)]/(n - 1) + [(n - 2)/(n - 1)]∫ [secy]^(n - 2) dy,代入n = 5和n = 3后就计算到了
case 2 简单得多.
∫ (1 + x²)^(-3/2) dx,x = tany,dx = sec²y dy
= ∫ (1 + tan²y)^(-3/2) sec²y dy
= ∫ (sec²y)^(-3/2) sec²y dy
= ∫ 1/sec³y * sec²y dy
= ∫ cosy dy
= siny + C
= x/√(1 + x²) + C
J = ∫ (1 + x²)^(3/2) dx
= ∫ (1 + tan²y)^(3/2) (sec²y dy)
= ∫ (sec²y)^(3/2) * sec²y dy,恒等式1 + tan²x = sec²x
= ∫ [secy]^5 dy ...(★)
= ∫ sec³y d(tany)
= sec³y tany - ∫ tany d(sec³y)
= sec³y tany - ∫ tany 3sec²y secy tany dy
= sec³y tany - 3∫ tan²y sec³y dy
= sec³y tany - 3∫ (sec²y - 1)sec³y dy
=> J = sec³y tany - 3J + 3K
K = ∫ sec³y dy = ∫ secy d(tany)
= secy tany - ∫ tany d(secy)
= secy tany - ∫ tany secy tany dy
= secy tany - ∫ (sec²y - 1)secy dy
= secy tany - K + ∫ secy dy
2K = secy tany + ∫ secy dy
K = (1/2)secy tany + (1/2)ln|secy + tany|
∴J = sec³y tany - 3J + 3K
4J = sec³y tany + (3/2)secy tany + (3/2)ln|secy + tany|
J = (1/4)sec³y tany + (3/8)secy tany + (3/8)ln|secy + tany| + C
= (1/4)x(1 + x²)^(3/2) + (3/8)x√(1 + x²) + (3/8)ln|x + √(1 + x²)| + C
不想做得这么复杂的话,在(★)处可用降幂公式:
∫ [secy]^n dy = [siny (secy)^(n - 1)]/(n - 1) + [(n - 2)/(n - 1)]∫ [secy]^(n - 2) dy,代入n = 5和n = 3后就计算到了
case 2 简单得多.
∫ (1 + x²)^(-3/2) dx,x = tany,dx = sec²y dy
= ∫ (1 + tan²y)^(-3/2) sec²y dy
= ∫ (sec²y)^(-3/2) sec²y dy
= ∫ 1/sec³y * sec²y dy
= ∫ cosy dy
= siny + C
= x/√(1 + x²) + C
看了 ∫(1+x^2)^3/2dx...的网友还看了以下:
如图,正方体A与正方体B的棱长比是2:1,正方体A的体积比正方体B的体积大2.1立方分米,正方体A的 2020-03-30 …
判断1.如果正方形周长和圆的周长相等,那么圆的面积比正方形的面积大.2.大圆的圆周率大,小圆的圆周 2020-05-14 …
把一块菜地分成两部分,一部分是5分之2公顷用于种黄瓜;另一种部分种豆角,占这块菜地的5分之2.黄瓜 2020-05-17 …
有关水的密度问题.急.1.已知P侗>P铁>P铝比较相同体积的实心铜块和实心铁块可知的质量大比较相同 2020-05-23 …
一个平行四边形的两组对边与一个长方形的两组对边分别相等,则哪个面积大?1.长方形面积大2.平行四边 2020-06-13 …
一块长方形木料恰好锯成3个正方形,这一块长方体木料恰好锯成3个正方体,这三个正方体表面积之和比原来 2020-07-07 …
如图正方形的面积是36平方厘米,△ABC的面积比△ACE的面积大2平方厘米.DE的长度是多少厘米? 2020-07-17 …
一、判断1.圆柱的体积一般比它的表面积大.2.底面积相等的两个圆柱的体积相等.3.一个圆柱的高扩大 2020-07-21 …
两个扇形,他们的圆心角的度数相等,那么[]半径长的扇形面积大2.两个扇形面积相等半径短的扇形面积大 2020-07-31 …
表面积相等的长方体和正方体的体积相比().1、正方体体积大2、长方体体积大3、体积相等 2021-02-03 …