早教吧作业答案频道 -->数学-->
设椭圆C:x2╱a2+y2╱b2=1(a>b>0)的离心率e为根号2╱2,点A是椭圆上的一点,且A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程(2)若椭圆C上一动点P(x0,y0)关于直线y=2x的对称点P1(x1.y1),求3x
题目详情
设椭圆C:x2╱a2+y2╱b2=1(a>b>0)的离心率e为根号2╱2,点A是椭圆上的一点,且A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程(2)若椭圆C上一动点P(x0,y0)关于直线y=2x的对称点P1(x1.y1),求3x1-4y1的取值范围
▼优质解答
答案和解析
1.求椭圆C的方程.
2.椭圆C上一动点P(X0,Y0)关于直线y=2x的对称点P1(X1,Y1),求3X1-4Y1的取值范围
A到两焦点的距离之和为4,即2a=4,a=2
e=c/a=√2/2,则c=根号2
c^2=a^2-b^2
2=4-b^2,b^2=2
即方程是:x^2/4+y^2/2=1.
因为点P1与点P关于直线y=2x对称,有
(yo+y1)/2=2*(xo+x1)/2 ①
(yo-y1)/(xo-x1)=-0.5 ②
整理得 x1= (4yo-3xo)/5 y1=(4x0+3y0)/5
代入3x1-4y1=-5x0
又点A在椭圆上,所以-2≤xo≤2,所以-10≤xo≤10
所以取值范围为[-10,10]
以下仅供参考:
A在椭圆上
可设x0=2cosθ,y0=根号2*sinθ
A(2cosθ,根号2*sinθ)
过A做垂直直线2x-y=0的直线L
所以直线L斜率=-1/2
所以直线L y-根号2*sinθ=-1/2(x-2cosθ)
该直线与2x-y=0的交点M
M(2/5(根号2*sinθ+cosθ),4/5(根号2*sinθ+cosθ))
所以A关于M的对称点P
x1=(4根号2*sinθ-6cosθ)/5
y1=(3倍根号2sinθ+8cosθ)/5
所以3x1-4y1=10cosθ
所以 -10≤3x1-4y1≤10
2.椭圆C上一动点P(X0,Y0)关于直线y=2x的对称点P1(X1,Y1),求3X1-4Y1的取值范围
A到两焦点的距离之和为4,即2a=4,a=2
e=c/a=√2/2,则c=根号2
c^2=a^2-b^2
2=4-b^2,b^2=2
即方程是:x^2/4+y^2/2=1.
因为点P1与点P关于直线y=2x对称,有
(yo+y1)/2=2*(xo+x1)/2 ①
(yo-y1)/(xo-x1)=-0.5 ②
整理得 x1= (4yo-3xo)/5 y1=(4x0+3y0)/5
代入3x1-4y1=-5x0
又点A在椭圆上,所以-2≤xo≤2,所以-10≤xo≤10
所以取值范围为[-10,10]
以下仅供参考:
A在椭圆上
可设x0=2cosθ,y0=根号2*sinθ
A(2cosθ,根号2*sinθ)
过A做垂直直线2x-y=0的直线L
所以直线L斜率=-1/2
所以直线L y-根号2*sinθ=-1/2(x-2cosθ)
该直线与2x-y=0的交点M
M(2/5(根号2*sinθ+cosθ),4/5(根号2*sinθ+cosθ))
所以A关于M的对称点P
x1=(4根号2*sinθ-6cosθ)/5
y1=(3倍根号2sinθ+8cosθ)/5
所以3x1-4y1=10cosθ
所以 -10≤3x1-4y1≤10
看了 设椭圆C:x2╱a2+y2╱...的网友还看了以下:
一个圆系方程的证明:如何证明过定点p(x0,y0)的圆系方程(x-x0)^2+(y-y0)^2+m 2020-05-20 …
已知两点(-2,y1)、(3,y2)均在抛物线y=ax2+bx+c上,点C(x0,y0)是该抛物线 2020-06-11 …
4题30分(1)已知P为椭圆X^2/9+Y^2/16=1上一点,P到一条准线的距离为P到相应焦点的 2020-06-30 …
已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y 2020-07-26 …
定义:若平面点集A中的任一个点(x0,y0),总存在正实数r,使得集合B={(x,y)|(x−x0 2020-07-30 …
定义:若平面点集A中的任一个点(x0,y0),总存在正实数r,使得集合B={(x,y)|(x−x0 2020-07-30 …
定义:若平面点集A中的任一点(x0,y0),总存在正实数r,使得集合{(x,y)|(x−x0)2+ 2020-07-30 …
已知y=a√x(a>0)与曲线y=ln√x在点(x0,y0)处有公共切线,(1.)求a的值及切点已 2020-07-31 …
如图,设曲线L的方程为y=f(x),且y″>0,MT、MP分别为该曲线在点M(x0,y0)处的切线 2020-07-31 …
已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0 2020-11-01 …