早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知圆C:x^2+y^2=r^2(r>0)经过点(1,根号3)(1)求圆得直线方程(2)是否存在经过点(-1,1)的直线l,它与圆C相交于A,B两个不同的点,且满足向量MO=二分之一倍向量OA+二分之根号下3倍向量OB(O为坐标

题目详情
已知圆C:x^2+y^2=r^2(r>0)经过点(1,根号3)
(1)求圆得直线方程
(2)是否存在经过点(-1,1)的直线l,它与圆C相交于A,B两个不同的点,且满足向量MO=二分之一倍向量OA+二分之根号下3倍向量OB(O为坐标原点)关系得点M也在圆C上,如果存在,求出直线方程;如果不存在,请说明理由
▼优质解答
答案和解析
(1)由圆C:x2+y2=r2,再由点(1,)在圆C上,得r2=12+()2=4
所以圆C的方程为
x2+y2=4;
(2)假设直线l存在,
设A(x1,y1),B(x2,y2),
M(x0,y0)
①若直线l的斜率存在,设直线l的方程为:
y-1=k(x+1),
联立消去y得,
(1+k2)x2+2k(k+1)x+k2+2k-3=0,
由韦达定理得x1+x2=-=-2+,
x1x2==1+,
y1y2=k2x1x2+k(k+1)(x1+x2)+(k+1)2=-3,
因为点A(x1,y1),B(x2,y2)在圆C上,
因此,得x12+y12=4,
x22+y22=4,
由=+得x0=,y0=,
由于点M也在圆C上,
则=4,
整理得,+3+x1x2+y1y2=4,
即x1x2+y1y2=0,所以1++(-3)=0,
从而得,k2-2k+1=0,即k=1,因此,直线l的方程为
y-1=x+1,即x-y+2=0,
②若直线l的斜率不存在,
则A(-1,),B(-1,-),M;
+=4-≠4,
故点M不在圆上与题设矛盾
综上所知:k=1,直线方程为x-y+2=0