早教吧作业答案频道 -->数学-->
1*2*3...*79*80的积的末尾有多少个连续的0?
题目详情
1*2*3...*79*80的积的末尾有多少个连续的0?
▼优质解答
答案和解析
从1到10,连续10个整数相乘:
1×2×3×4×5×6×7×8×9×10.
连乘积的末尾有几个0?
答案是两个0.其中,从因数10得到1个0,从因数2和5相乘又得到1个0,共计两个.
刚好两个0?会不会再多几个呢?
如果不相信,可以把乘积计算出来,结果得到
原式=3628800.你看,乘积的末尾刚好两个0,想多1个也没有.
那么,如果扩大规模,拉长队伍呢?譬如说,从1乘到20:
1×2×3×4×…×19×20.这时乘积的末尾共有几个0呢?
现在答案变成4个0.其中,从因数10得到1个0,从20得到1个0,从5和2相乘得到1个0,从15和4相乘又得到1个0,共计4个0.
刚好4个0?会不会再多几个?
请放心,多不了.要想在乘积末尾得到一个0,就要有一个质因数5和一个质因数2配对相乘.在乘积的质因数里,2多、5少.有一个质因数5,乘积末尾才有一个0.从1乘到20,只有5、10、15、20里面各有一个质因数5,乘积末尾只可能有4个0,再也多不出来了.
把规模再扩大一点,从1乘到30:
1×2×3×4×…×29×30.现在乘积的末尾共有几个0?
很明显,至少有6个0.
你看,从1到30,这里面的5、10、15、20、25和30都是5的倍数.从它们每个数可以得到1个0;它们共有6个数,可以得到6个0.
刚好6个0?会不会再多一些呢?
能多不能多,全看质因数5的个数.25是5的平方,含有两个质因数5,这里多出1个5来.从1乘到30,虽然30个因数中只有6个是5的倍数,但是却含有7个质因数5.所以乘积的末尾共有7个0.
乘到30的会做了,无论多大范围的也就会做了.
例如,这次乘多一些,从1乘到100:
1×2×3×4×…×99×100.现在的乘积末尾共有多少个0?
答案是24个.
1×2×3×4×5×6×7×8×9×10.
连乘积的末尾有几个0?
答案是两个0.其中,从因数10得到1个0,从因数2和5相乘又得到1个0,共计两个.
刚好两个0?会不会再多几个呢?
如果不相信,可以把乘积计算出来,结果得到
原式=3628800.你看,乘积的末尾刚好两个0,想多1个也没有.
那么,如果扩大规模,拉长队伍呢?譬如说,从1乘到20:
1×2×3×4×…×19×20.这时乘积的末尾共有几个0呢?
现在答案变成4个0.其中,从因数10得到1个0,从20得到1个0,从5和2相乘得到1个0,从15和4相乘又得到1个0,共计4个0.
刚好4个0?会不会再多几个?
请放心,多不了.要想在乘积末尾得到一个0,就要有一个质因数5和一个质因数2配对相乘.在乘积的质因数里,2多、5少.有一个质因数5,乘积末尾才有一个0.从1乘到20,只有5、10、15、20里面各有一个质因数5,乘积末尾只可能有4个0,再也多不出来了.
把规模再扩大一点,从1乘到30:
1×2×3×4×…×29×30.现在乘积的末尾共有几个0?
很明显,至少有6个0.
你看,从1到30,这里面的5、10、15、20、25和30都是5的倍数.从它们每个数可以得到1个0;它们共有6个数,可以得到6个0.
刚好6个0?会不会再多一些呢?
能多不能多,全看质因数5的个数.25是5的平方,含有两个质因数5,这里多出1个5来.从1乘到30,虽然30个因数中只有6个是5的倍数,但是却含有7个质因数5.所以乘积的末尾共有7个0.
乘到30的会做了,无论多大范围的也就会做了.
例如,这次乘多一些,从1乘到100:
1×2×3×4×…×99×100.现在的乘积末尾共有多少个0?
答案是24个.
看了 1*2*3...*79*80...的网友还看了以下:
写出下面各数的得数.74+26=6×70=84÷6=120×19≈0÷40=81×79≈66÷3= 2020-04-07 …
口算36+41=50+390=800+120=420-270=720-50=400+300=87- 2020-04-07 …
在58,511,0.65,79这四个数中最小的是,最大的是. 2020-04-07 …
口算2113×0=38×1=79×9+15=58-0.625×89=2÷23=16×519=4÷4 2020-04-07 …
不计算,判断下面各题的积是几位小数.1.05×0.2的积是位小数.7.3×0.18的积是位小数.4 2020-04-07 …
5+3=8的英文翻译还有6+2不等于79>7所有的英文翻译!急! 2020-05-13 …
桔子的质量是苹果的79,这里是把看作单位“1”,是单位“1”的79. 2020-05-13 …
有80盒饼干,其中的79盒质量相同,另有1盒少了几块,如果能用天平秤,至少几次可以找出这盒饼干 2020-05-15 …
求救~方程ax^2+bx+c=0(a≠0)有一非零根x1,方程-ax^2+bx+c=0有一非零根x 2020-05-16 …
根据下述背景。回答 76~79 题。 背景材料: 某住宅小区工程,发包方已经准备好了所有的施工图纸, 2020-05-18 …