早教吧作业答案频道 -->数学-->
求角的三等分点.怎样用尺规作出角(任意角)的三等分点,将角分成三等份?(最好配图说明)谢啦.
题目详情
求角的三等分点.
怎样用尺规作出角(任意角)的三等分点,将角分成三等份?(最好配图说明)谢啦.
怎样用尺规作出角(任意角)的三等分点,将角分成三等份?(最好配图说明)谢啦.
▼优质解答
答案和解析
尺归作图不可能三等分角的.
在数学的历史上有三个问题始终以可惊的力量坚廿了两千多年.初等几何学到现在至少已有了三千年的历史,在这期间努力于初等几何学之发展的学者们曾经遇到过很多的难题,而始终绞着学者脑汁的却就是这三个问题.问题是「立方倍积」,「化圆为方」和「三等分角」,由于这三个问题的屹立不移,现在就被合称为「三大问题」.
立方倍积
关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止.”由此可见这神是很喜欢数学的.居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一棱的长度都是旧祭坛棱长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕.结果被一个学者指出了错误:「棱二倍起来体积就成了八倍,神所要的是二倍而不是八倍.」大家都觉得这个说法很对,于是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟疫仍不见消灭.人们困扰地再去问神,这次神回答说:「你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体.」居民们恍然大悟,就去找当时大学者柏拉图(Plato)请教.由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了后代许多数学家们的脑汁.而由于这一个传说,立方倍积问题也就被称为提洛斯问题.
化圆为方
方圆的问题与提洛斯问题是同时代的,由希腊人开始研究.有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr2.由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是
(1/2)(2πr)®=πr平方
与已知圆的面积相等.由这个直角三角形不难作出同面积的正方形来.但是如何作这直角三角形的边.即如何作一线段使其长等于一已知圆的周长,这问题阿基米得可就解不出了.
三等分角
三等分任意角的题也许比那两个问题出现更早,早到历史上找不出有关的记载来.但无疑地它的出现是很自然的,就是我们自己在现在也可以想得到的.纪元前五、六百年间希腊的数学家们就已经想到了二等分任意角的方法,正像我们在几何课本或几何画中所学的:以已知角的顶点为圆心,用适当的半径作弧交角两的两边得两个交点,再分别以这两点为圆心,用一个适当的长作半径画弧,这两弧的交点与角顶相连就把已知角分为二等分.二等分一个已知角既是这么容易,很自然地会把问题略变一下:三等分怎么样呢?这样,这一个问题就这么非常自然地出现了.
在数学的历史上有三个问题始终以可惊的力量坚廿了两千多年.初等几何学到现在至少已有了三千年的历史,在这期间努力于初等几何学之发展的学者们曾经遇到过很多的难题,而始终绞着学者脑汁的却就是这三个问题.问题是「立方倍积」,「化圆为方」和「三等分角」,由于这三个问题的屹立不移,现在就被合称为「三大问题」.
立方倍积
关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止.”由此可见这神是很喜欢数学的.居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一棱的长度都是旧祭坛棱长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕.结果被一个学者指出了错误:「棱二倍起来体积就成了八倍,神所要的是二倍而不是八倍.」大家都觉得这个说法很对,于是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟疫仍不见消灭.人们困扰地再去问神,这次神回答说:「你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体.」居民们恍然大悟,就去找当时大学者柏拉图(Plato)请教.由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了后代许多数学家们的脑汁.而由于这一个传说,立方倍积问题也就被称为提洛斯问题.
化圆为方
方圆的问题与提洛斯问题是同时代的,由希腊人开始研究.有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr2.由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是
(1/2)(2πr)®=πr平方
与已知圆的面积相等.由这个直角三角形不难作出同面积的正方形来.但是如何作这直角三角形的边.即如何作一线段使其长等于一已知圆的周长,这问题阿基米得可就解不出了.
三等分角
三等分任意角的题也许比那两个问题出现更早,早到历史上找不出有关的记载来.但无疑地它的出现是很自然的,就是我们自己在现在也可以想得到的.纪元前五、六百年间希腊的数学家们就已经想到了二等分任意角的方法,正像我们在几何课本或几何画中所学的:以已知角的顶点为圆心,用适当的半径作弧交角两的两边得两个交点,再分别以这两点为圆心,用一个适当的长作半径画弧,这两弧的交点与角顶相连就把已知角分为二等分.二等分一个已知角既是这么容易,很自然地会把问题略变一下:三等分怎么样呢?这样,这一个问题就这么非常自然地出现了.
看了 求角的三等分点.怎样用尺规作...的网友还看了以下:
有四个人,每个人有三天假,白天难至少有两个人值班,每天有一个值夜班的,怎么分配用的时间最短 2020-03-30 …
一个LC振荡电路,电容器的电容量可从C1=39pF变化到C2=390pF.要求它产生频率范围f1= 2020-04-07 …
互换性与技术测量题:某配合的基本尺寸为φ40mm,要求配合的Xmax=+25μm,Ymax=-20 2020-04-27 …
求一些常用的英语句子,聊天用的跟老外聊天用,我英语超差,求常用的语句 2020-05-14 …
房间昏暗现有罗盘五帝钱水景假山金蟾求风水化解之法座北朝南求财用的啊但是最近不是太顺利 2020-05-17 …
厂家和用户为性能扩充或作为特殊要求使用的信号线称为( )A.备用线B.控制线C.数据线D.总线 2020-05-23 …
自记雨量计有水平工作要求,配置()的仪器应调节水准泡至水平。A.水平尺B.水准泡C.水准仪D.符合器 2020-05-27 …
常见高压断路器配用的操动机构有( )A.弹簧操动机构B.电磁操动机构C.液压操动机构D.手动操动机构 2020-05-29 …
主板按所配用的微处理器来分类,可分为:()、()主板、()和()主板等类型。 2020-05-31 …
塑料配用的色粉PP料用和ABS用有什么区别?为什么那个ABS用的色粉要比PP料用的色粉要贵.这两种 2020-06-09 …