早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图①,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图②).(1)探究DB′与EC′的数量关系,并给予证明;(2

题目详情
如图①,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图②).
(1)探究DB′与EC′的数量关系,并给予证明;
(2)当DB′∥AE时,求此时旋转角α的度数;
(3)如图③,在旋转过程中,设 AC′与DE所在直线交于点P,当△ADP成为等腰三角形时,求此时的旋转角α的度数.(直接写出结果)
▼优质解答
答案和解析
(1)DB′=EC′,
证明:如图②,
∵AB=AC,D、E分别是AB、AC的中点,
∴AD=AE,
∵∠B′AC′=∠DAE=90°,
∴∠B′AD=∠C′AE=90°-∠DAC′,
在△B′AD和△C′AE中,
AB′=AC′
∠B′AD=∠C′AE
AD=AE

∴△B′AD≌△C′AE(SAS),
∴DB′=EC′.

(2)∵DB′∥AE,
∴∠ADB′=∠EAD=90°
又∵△B′AD≌△C′AE,
∴∠AEC′=∠ADB′,
∴∠AEC′=90°,
即△AEC′为直角三角形,
又∵AE=
1
2
AC=
1
2
AC′,
∴∠EC′A=30°
∴α=90°-30°=60°.

(3)分为三种情况:
①当AP=DP时,
∵∠ADP=45°,
∴∠DAP=∠ACP=45°,
∴α=90°-45°=45°;
②当AD=AP时,此时P和E重合,即α=0°;
③当AD=DP时,
∵∠ADP=45°,
∴∠DAP=∠DPA=
1
2
(180°-∠ADP)=
1
2
×(180°-45°)=67.5°,
∴α=90°-67.5°=22.5°.