早教吧 育儿知识 作业答案 考试题库 百科 知识分享

蠕虫悖论求解这是基诺未能想出来的又一个悖论.一条蠕虫在橡皮绳的一端.橡皮绳长一米.蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行.在1秒钟之后,橡皮绳就像橡皮筋一样拉长一米.再过一秒钟

题目详情
蠕虫悖论求解
这是基诺未能想出来的又一个悖论.一条蠕虫在橡皮绳的一端.橡皮绳长一米.蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行.
在1秒钟之后,橡皮绳就像橡皮筋一样拉长一米.再过一秒钟后,它又拉长为3米,如此下去.蠕虫最后究竟会不会达到终点呢?
根据直觉你会说:蠕虫绝不能爬到终点.可是,它爬到了.试试看,你是否能算出蠕虫要爬多远.
计算是这样的:
第一秒:蠕虫爬了全绳长的1/100,第二秒:蠕虫爬了全绳长的1/200……依次类推
于是,第n秒,蠕虫爬了全绳长的1/n*100
则在第2的k次方秒,蠕虫爬了全绳长的1/2的k次方*100
那么在2的k次方秒这个过程中,蠕虫爬了:
1/100+1/200+……+1/2的k次方*100
将1/100提出后,原式变为:
1/100(1+1/2+1/3+……+1/2的k次方)
整理后得:
1/100[(1+1/2)+(1/3+1/4)+(1/5+1/6+1/7+1/8)+……+(1/{2的k-1次方加1}+……+1/2的k次方)]
为什么要这么整理呢?
试比较下面的式子和上面的式子:
1/100[1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+……+(1/2的k次方+……+1/2的k次方)]
很明显:下面的式子将上面的式子的许多数改小了,所以下面的式子比上面的式子小
我们还可以发现:下面的式子每一个括号里的和都为1/2
那么n个1/2相加为n/2,下面的式子为k个1/2相加,得k/2
当下面的式子等于1时,1+k/2=100,
k/2=99,k=198,
所以,k/2=198,蠕虫爬到了另一头.
这是完整的蠕虫悖论.
▼优质解答
答案和解析
这道问题的关键在于橡皮绳拉长之后蠕虫在橡皮绳上的位置究竟是如何确定的,直觉判断的明显爬不到头有一部分是认为橡皮绳拉长之后橡皮绳到起点的距离不变,(此时显然爬不到头……)但是绳子拉长是按照比例计算的,也就是计算时用的方法,也就是说绳子1米蠕虫爬1厘米,绳子拉长到两米后,蠕虫到绳子起始端的距离按比例变成2厘米(不是爬的结果),那毫无疑问确实是能爬到头的,如果这时候你通过直觉判断仍然是爬不到头,那没办法,事实有时候就是会违背第一直觉.因为绳子拉长1米,当绳子原长足够长,蠕虫爬过的距离比较大时,(只要蠕虫爬过的距离超过绳子长度的99%,但是注意到蠕虫爬过的绳长百分比始终增大而且可以任意增大,这总会实现)蠕虫到绳子另一端的距离增加量可以小于1厘米,这样蠕虫就能爬到另一头了,也就是说蠕虫在爬过很远很远之后,会越爬越简单.当然问题本质是因为1+1/2+1/3+.无穷大,所以其实还是那个计算更能说明这个问题.
看了 蠕虫悖论求解这是基诺未能想出...的网友还看了以下:

一块橡皮每次都切它的一半,可以无限切下去么?我在想一个东西可以无限放大,那可不可以无限缩小呢?就和  2020-04-27 …

在研究有关橡皮泥受到浮力的实验中(1)现有两个质量相同的圆柱状橡皮泥,把其中一块捏成碗状,再分别放  2020-05-17 …

橡筋飞机问题怎样使橡筋飞机在空中停留时间较长回答请不要空虚比如“调整重心,保证飞机的稳定”怎样做到  2020-05-17 …

怎么解释在一根杆的不同位置上戳上同样的橡皮泥(物体),然后同时将杆立起来,松手后……怎么解释在一根  2020-06-06 …

疑问:我家一块黑橡皮放在书里夹着,一天后我再翻开橡皮自己烂成一小块一小块的这是怎么回事把我吓得橡皮  2020-06-23 …

橡胶板填充物我们这的未硫化再生橡胶最便宜的也要三块多,为什么其他地方的橡胶板才两块多一公斤成品,里  2020-07-06 …

海绵宝宝有一集珊迪去过冬,因为树屋下雪了海绵宝宝去找珊迪,发现橡树屋关闭了,上面贴着珊迪的话;“你  2020-07-10 …

照图甲那样,把小铃铛拴在线上,线上端穿过橡皮塞,照图乙那样,把橡皮塞塞到烧瓶上,然后摇动烧瓶,记住  2020-07-11 …

材质橡胶1-4是什么意思有份图纸上,名称栏内是:橡胶板,材质栏内是:橡胶1-4,这个橡胶1-4是什  2020-07-11 …

什么样的橡胶耐浓硫酸?要求价格不算很贵的橡胶!橡胶应用在60%的浓硫酸中,温度为100要求使用寿命1  2020-11-20 …