早教吧作业答案频道 -->其他-->
设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)x在(1,+∞)内()A.曲线是向上凹的B.曲线是向上凸的C.单调减少D.单调增
题目详情
设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=
在(1,+∞)内( )
A.曲线是向上凹的
B.曲线是向上凸的
C.单调减少
D.单调增加
f(x) |
x |
A.曲线是向上凹的
B.曲线是向上凸的
C.单调减少
D.单调增加
▼优质解答
答案和解析
因为函数f(x)在区间[1,+∞)内二阶可导,
且满足条件f(1)=f′(1)=0,g(x)=
,
所以g′(x)=
,
设F(x)=xf'(x)-f(x),
则F'(x)=xf''(x)<0,
又x>1时f″(x)<0,
故F(x)单调减少,
F(x)<F(1)=0,
知g'(x)<0.
所以g(x)=
在(1,+∞)内单调减少,
对于曲线的凹凸性无法判断,
故选:C.
且满足条件f(1)=f′(1)=0,g(x)=
f(x) |
x |
所以g′(x)=
xf′(x)−f(x) |
x2 |
设F(x)=xf'(x)-f(x),
则F'(x)=xf''(x)<0,
又x>1时f″(x)<0,
故F(x)单调减少,
F(x)<F(1)=0,
知g'(x)<0.
所以g(x)=
f(x) |
x |
对于曲线的凹凸性无法判断,
故选:C.
看了 设函数f(x)在区间[1,+...的网友还看了以下:
函数、极限题……步骤详写奥,亲.1、若f(x-2)=x+1,则f(x).2、设函数lim(x->3 2020-05-13 …
导数题:f(x)=(Ln(x-1)/(x+1)) 求此函数的2009阶导数在x=0处的值.即求f^ 2020-06-03 …
∫(0,+∞)xe^x/(1+e^x)^2dx,求出来了,但是感觉不对!用定积分先求出了.最后正无 2020-06-12 …
设X≥1,比较因为比较x3与x2-x+1的大小解x-(x-x+1)=x-x+x-1=x(x-1)+ 2020-06-18 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
如要求dx/dy|(-1,-8),请问其中的(-1,-8)是什么意思?是求f(x)在x=-1的导数 2020-07-21 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
初一数学问题28.1/a-1+1/a+1-2/a^2-129.3-x/2-x÷(x+2-5/x-2 2020-07-22 …
sin(x-1)是周期函数吗是的话周期是多少?按错了是sin(x+1)判断题:f(x)=e^(2- 2020-08-02 …
求y=2e^x+e^-x的极值//为什么两边取自然对数?由y=2e^x+e^(-x)对y求导:y′ 2020-08-02 …