早教吧 育儿知识 作业答案 考试题库 百科 知识分享

点集拓扑问题设X,Y是拓扑空间,f:X→Y是常值映射,即对任意x∈X,f(x)=y0,(y0是Y中一固定点),证明常值映射f是连续映射为什么若y0∈U,则f^(-1)(U)=X,

题目详情
点集拓扑问题
设 X,Y 是拓扑空间,f :X →Y是常值映射,即 对任意 x∈X,f (x) = y0,( y0是 Y 中一固定点),证明常值映射 f 是连续映射
为什么若y0 ∈ U,则f^(-1)(U) = X,
▼优质解答
答案和解析
对Y中任意开集U:
若y0 ∈ U,则f^(-1)(U) = X,是X中的开集.
若y0不属于U,则f^(-1)(U) = ∅,也是X中的开集.
因此,对于映射f,Y中开集的原像都是X中的开集,即f为连续映射.
对于Y中子集S,其在f下的原像集f^(-1)(S)定义为{x ∈ X | f(x) ∈ S}.
用语言描述就是X中被f映到S里的所有元素.
常值映射将X中全体元素映为y0,因此当y0 ∈ U时,f^(-1)(U) = X.
而当y0不属于U,则不存在这样的元素,即f^(-1)(U) = ∅.