早教吧作业答案频道 -->数学-->
为什么圆锥的体积是圆柱的1/3要理论依据,不要实践得出,好的话一定追加最好不要超过初中范畴
题目详情
为什么圆锥的体积是圆柱的1/3
要理论依据,不要实践得出,好的话一定追加
最好不要超过初中范畴
要理论依据,不要实践得出,好的话一定追加
最好不要超过初中范畴
▼优质解答
答案和解析
用电脑显示出来比较不好看,你大概按照那思路自己笔算证明吧
证明:
把圆锥沿高分成k分 每份高 h/k,
第 n份半径:n*r/k
第 n份底面积:pi*n^2*r^2/k^2
小朋友不要写
第 n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3 因为 1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6
所以
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3 =pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为V柱=pi*h*r^2
所以 V锥是与它等底等高的V柱体积的1/3
证明:
把圆锥沿高分成k分 每份高 h/k,
第 n份半径:n*r/k
第 n份底面积:pi*n^2*r^2/k^2
小朋友不要写
第 n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3 因为 1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6
所以
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3 =pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为V柱=pi*h*r^2
所以 V锥是与它等底等高的V柱体积的1/3
看了 为什么圆锥的体积是圆柱的1/...的网友还看了以下:
已知圆心为C的圆经过点A(0,1)和B(-2,3),且圆心直线L:x+2y-3=0上1求圆C标准方 2020-04-27 …
几道关于"圆的方程"的数学题,1.求圆的方程.过点(3,2),圆心在直线y=2x上,与直线y=2x 2020-05-16 …
急!椭圆相关习题1焦点在X轴上,且经过点A(2,0)和B(0,1),求椭圆标准方程(过程我会,可是 2020-05-23 …
弧,玄,圆心角题(1)圆O中,玄AB=3,圆心角AOB=120,则圆O的半径是?(2)A,B,C, 2020-07-02 …
椭圆.您的提问过短椭圆x²/6+y²/2=1,左焦点F(-2,0)一条过D(-3,0)的直线交椭圆 2020-07-17 …
已知圆c的圆心为1,-2,且圆过点二分之一,二分之根号3减二,求1;圆的的方程2;求点p[2,3] 2020-07-26 …
圆经过点P,圆心在直线上,求圆的方程一个圆经过点P(5,3),圆心在直线上X+2Y-1=0上,半径 2020-07-26 …
写出下列圆的标准方程(1)圆心为(-3,4),且经过坐标原点(2)半径为5,且经过点M(0,0), 2020-07-30 …
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为根号5/3,椭圆过定点M(2,0), 2020-07-30 …
从已知圆(x-1)^2+(y-1)^2=1外一点P(2,3)向圆引切线,求切线方程,下面是书上的解 2020-08-01 …