早教吧作业答案频道 -->数学-->
如图,在斜三梭柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.
题目详情
如图,在斜三梭柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.
▼优质解答
答案和解析
证明:(1)连结BC1,取AB中点E′,
∵侧面AA1C1C是菱形,AC1与A1C交于点O,
∴O为AC1的中点,
∵E′是AB的中点,
∴OE′∥BC1;
∵OE′⊄平面BCC1B1,BC1⊂平面BCC1B1,
∴OE′∥平面BCC1B1,
∵OE∥平面BCC1B1,
∴E,E′重合,
∴E是AB中点;
(2)∵侧面AA1C1C是菱形,
∴AC1⊥A1C,
∵AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,
∴AC1⊥平面A1BC,
∵BC⊂平面A1BC,
∴AC1⊥BC.
∵侧面AA1C1C是菱形,AC1与A1C交于点O,
∴O为AC1的中点,
∵E′是AB的中点,
∴OE′∥BC1;
∵OE′⊄平面BCC1B1,BC1⊂平面BCC1B1,
∴OE′∥平面BCC1B1,
∵OE∥平面BCC1B1,
∴E,E′重合,
∴E是AB中点;
(2)∵侧面AA1C1C是菱形,
∴AC1⊥A1C,
∵AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,
∴AC1⊥平面A1BC,
∵BC⊂平面A1BC,
∴AC1⊥BC.
看了 如图,在斜三梭柱ABC-A1...的网友还看了以下:
在共点O三条不共面直线a,b,c上,在点O两侧分别取点A和A',B和B',C和C',且AO=A'O 2020-05-13 …
1.o是平面上一定点,A B C 是平面上不共线的三个点 动点P满足 向量OP=向量OA+λ(向量 2020-05-16 …
初二数学题,追加200分△AOC是一个直角三角形,把△AOC沿AC平移,使A点平移到C碘,O点平移 2020-05-20 …
已知:A,B,C是平面内互异的三点,O为平面上任意一点,OC=xOA+yOB已知:A,B,C是平面 2020-06-15 …
如图,直线AA',BB',CC'相交于点O,AO=A'O,BO=B'O,CO=C'O,求证:平面A 2020-07-09 …
如图所示,两根平行放置的金属导轨COD、C′O′D′,导轨OC,O′C′部分粗糙,处在同一水平面内 2020-07-19 …
O是平面上一定点,A、B、C是平面上上不共线的三个点.O是平面上一定点,A、B、C是平面上上不共线 2020-07-30 …
平行四边形ABCO四个定点坐标分别是A(√3,√3)B(3√3,√3)C(2√3,0)O(0,0) 2020-07-30 …
已知三角形ABC的三边长BC=a,AC=b,AB=c,O为ABC所在平面内一点,若aOA已知三角形 2020-08-01 …
在正方体ABCD-A′B′C′D′中,判断下列命题是否正确,并说明理由:(1)直线AC在平面ABC 2020-08-01 …