早教吧作业答案频道 -->数学-->
已知:△ABC和△ADE都是等腰直角三角形,其中∠ABC=∠ADE=90°,点M为EC的中点.(1)如图,当点D,E分别在AC,AB上时,求证:△BMD为等腰直角三角形;(2)如图,将图中的△ADE绕点A逆时针旋
题目详情
已知:△ABC和△ADE都是等腰直角三角形,其中∠ABC=∠ADE=90°,点M为EC的中点.
(1)如图,当点D,E分别在AC,AB上时,求证:△BMD为等腰直角三角形;
(2)如图,将图中的△ADE绕点A逆时针旋转45°,使点D落在AB上,此时问题(1)中的结论“△BMD为等腰直角三角形”还成立吗?请对你的结论加以证明.
(1)如图,当点D,E分别在AC,AB上时,求证:△BMD为等腰直角三角形;
(2)如图,将图中的△ADE绕点A逆时针旋转45°,使点D落在AB上,此时问题(1)中的结论“△BMD为等腰直角三角形”还成立吗?请对你的结论加以证明.
▼优质解答
答案和解析
(1)证明:如图,
∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,
∴∠EDC=90°,BA=BC,
∴∠BCA=45°,
∵点M为EC的中点,
∴BM=
EC=MC,DM=
EC=MC,
∴BM=DM,
∴∠MBC=∠MCB,∠MDC=∠MCD,
∴∠BME=2∠BCM,∠EMD=2∠DCM,
∴∠BMD=∠BME+∠EMD=2∠BCM+2∠DCM
=2(∠BCM+∠DCM)=2∠BCA=2×45°=90°,
∴△BMD为等腰直角三角形.
(2)△BMD为等腰直角三角形.理由如下:
延长DM交BC于点N.
∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,
∴BA=BC,DE=DA,∠EDB=90°,
∴∠EDB=∠DBC,
∴ED∥BC,
∴∠DEC=∠BCE,
∵点M为EC的中点,
∴EM=CM,
∵在△EDM与△CNM中,∠DEM=∠NCM,EM=CM,∠EMD=∠CMN,
∴△EDM≌△CNM,
∴ED=CN,MD=MN,
∴AD=CN,
∴BA-DA=BC-NC,
即BD=BN,
∴BM=
DN=DM,
∴BM⊥DN,即∠BMD=90°,
∴△BMD为等腰直角三角形.
∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,
∴∠EDC=90°,BA=BC,
∴∠BCA=45°,
∵点M为EC的中点,
∴BM=
1 |
2 |
1 |
2 |
∴BM=DM,
∴∠MBC=∠MCB,∠MDC=∠MCD,
∴∠BME=2∠BCM,∠EMD=2∠DCM,
∴∠BMD=∠BME+∠EMD=2∠BCM+2∠DCM
=2(∠BCM+∠DCM)=2∠BCA=2×45°=90°,
∴△BMD为等腰直角三角形.
(2)△BMD为等腰直角三角形.理由如下:
延长DM交BC于点N.
∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,
∴BA=BC,DE=DA,∠EDB=90°,
∴∠EDB=∠DBC,
∴ED∥BC,
∴∠DEC=∠BCE,
∵点M为EC的中点,
∴EM=CM,
∵在△EDM与△CNM中,∠DEM=∠NCM,EM=CM,∠EMD=∠CMN,
∴△EDM≌△CNM,
∴ED=CN,MD=MN,
∴AD=CN,
∴BA-DA=BC-NC,
即BD=BN,
∴BM=
1 |
2 |
∴BM⊥DN,即∠BMD=90°,
∴△BMD为等腰直角三角形.
看了 已知:△ABC和△ADE都是...的网友还看了以下:
如图,在梯形ABCD中,AB‖CD,∠A=90°,AB=3,CD=6,BE⊥BC交直线AD于点E. 2020-05-15 …
已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连结D′E 2020-06-03 …
如图,在梯形ABCD中,AB‖CD,∠A=,AB=3,CD=6,BE⊥BC交直线AD于点E.(1) 2020-06-12 …
各位达人。在下想请教一下EXCEL公式。A.B.C.D四个变量。当B大于等于A的95%时,D等于C 2020-06-30 …
已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连结D′E 2020-07-04 …
图,菱形纸片ABCD中,角A=60°,将纸片折叠,点A,D分别落在A'D'处,且A'D'经过BEF 2020-07-06 …
有机物A易溶于水,且1molA能跟Na反应生成0.5molH2,但不与NaOH反应,已知A通过如下 2020-07-09 …
已知三角形ABC中,AB=AC,D,E在三角形ABC中,AB=AC,点D,E是BC边上的点,将三角 2020-07-21 …
若函数f(x)在R上可导,且f(x)>f'(x),当a>b时,下列不等式成立的是A.e^af(若函 2020-07-29 …
已知△ABC的面积为1,D,E分别是AB,AC边上的点,CD,BE交于F点,过点F作FM‖AB,FN 2020-11-03 …