早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如何证明群G的中心和换位子群都是G的特征子群.

题目详情
如何证明群G的中心和换位子群都是G的特征子群.
▼优质解答
答案和解析
由于群G的中心Z(G)中的元素与G中任意元素可交换,因此在任意自同构映射下:
gZ(G)g^(-1)=gg^(-1)Z(G)=Z(G)
从而Z(G)是G的特征子群.
对于G的换位子群G'(我习惯叫导群),在自同构映射下:
对任意的[a,b]=a^(-1)b^(-1)ab∈G',
g[a,b]g^(-1)=[gag^(-1),gbg^(-1)]∈G'
这就说明了G'是G的特征子群
看了 如何证明群G的中心和换位子群...的网友还看了以下: