早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若y1、y2是方程p1(x)y''+p2(x)y'+p3(x)y=f(x)的两个特解,则y1-y2是方程的p1(x)y''+p2(x)y'+p3(x)y=0的解

题目详情
若y1、y2是方程p1(x)y''+p2(x)y'+p3(x)y=f(x)的两个特解,则y1-y2是方程的p1(x)y''+p2(x)y'+p3(x)y=0的解
▼优质解答
答案和解析
由p1(x)y1''+p2(x)y1'+p3(x)y1=f(x)
p1(x)y2''+p2(x)y2'+p3(x)y2=f(x)
相减得:p1(x)(y1''-y2'')+p2(x)(y1'-y2')+p3(x)(y1-y2)=0
即:p1(x)(y1-y2)''+p2(x)(y1-y2)'+p3(x)(y1-y2)=0
故:y1-y2是方程p1(x)y''+p2(x)y'+p3(x)y=0的解