早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知三棱锥S-ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.(1)求证:BC⊥SA(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;(3)若二面角H-AB-C的平面角等于30°,S

题目详情
已知三棱锥S-ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.
(1)求证:BC⊥SA
(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;
(3)若二面角H-AB-C的平面角等于30°,SA=2
3
,求三棱锥S-ABC的体积.
▼优质解答
答案和解析
证明:(1)∵AH⊥面SBC,BC在面SBC内,
∴AH⊥BC,
∵H是△SBC的垂心,∴SH⊥BC,
又∵SH∩AH=H,∴BC⊥面SAH,
∴BC⊥SA.…(4分)
(2)∵SO⊥面ABC,BC在面ABC内∴SO⊥BC,

又∵BC⊥SA,SA∩SO=S,
BC⊥面SOA,
∴AO⊥BC,同理AB⊥OC,…(8分)
因此O为底面△ABC的垂心,
而三棱锥S-ABC的底面是正三角形,
故O为底面△ABC的中心.
(3)由(1)有SA=SB=SC=2
3

设CO交AB于F,则CF⊥AB,CF是EF在面ABC内的射影,
∴EF⊥AB,∴∠EFC为二面角H-AB-C的平面角,
∠EFC=30°,∠ECF=60°,
OC=
3
,SO=3,AB=3,
S△ABC=
3
4
•32=
9
3
4

VS−ABC=
1
3
S△ABC•SO=
9
3
9
.…(14分)
看了 已知三棱锥S-ABC的底面是...的网友还看了以下: