早教吧作业答案频道 -->数学-->
已知:如图所示,直线MA∥NB,∠MAB与∠NBA的平分线交于点C,过点C作一条直线l与两条直线MA、NB分别相交于点D、E.(1)如图1所示,当直线l与直线MA垂直时,猜想线段AD、BE、AB之间的数量关
题目详情
已知:如图所示,直线MA∥NB,∠MAB与∠NBA的平分线交于点C,过点C作一条直线l与两条直线MA、NB分别相交于点D、E.
(1)如图1所示,当直线l与直线MA垂直时,猜想线段AD、BE、AB之间的数量关系,请直接写出结论,不用证明;
(2)如图2所示,当直线l与直线MA不垂直且交点D、E都在AB的同侧时,(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由;
(3)当直线l与直线MA不垂直且交点D、E在AB的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD、BE、AB之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.
(1)如图1所示,当直线l与直线MA垂直时,猜想线段AD、BE、AB之间的数量关系,请直接写出结论,不用证明;
(2)如图2所示,当直线l与直线MA不垂直且交点D、E都在AB的同侧时,(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由;
(3)当直线l与直线MA不垂直且交点D、E在AB的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD、BE、AB之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.
▼优质解答
答案和解析
(1)AD+BE=AB.
(2)成立.
(方法一):在AB上截取AG=AD,连接CG.
∵AC平分∠MAB,
∴∠DAC=∠CAB,
又∵AC=AC,AD=AG,
∴△ADC≌△AGC(SAS),
∴∠DCA=∠ACG,
∵AM∥BN,
∴∠DAC+∠CAB+∠GBC+∠CBE=180°,
∵∠DAC=∠CAB,∠GBC=∠CBE,
∴∠CAB+∠GBC=90°,
∴∠ACB=90°即∠ACG+∠GCB=90°,
∵∠DCA+∠ACG+∠GCB+∠BCE=180°,
∴∠DCA+∠BCE=90°,
∴∠GCB=∠ECB,
∵∠ABC=∠CBE,BC=BC,
∴△BGC≌△BEC.
∴BG=BE,
∴AD+BE=AG+BG,AD+BE=AB.
(方法二):过点C作直线FG⊥AM,垂足为点F,交BN于点G.作CH⊥AB,垂足为点H.
由(1)得AF+BG=AB,
∵AM∥BN,∠AFG=90°,
∴∠BGF=∠FGE=90°,
∵∠DAC=∠CAB,∠ABC=∠CBE,
∴CF=CH,CH=CG,
∴CF=CG,
∵∠FCD=∠ECG,
∴△CFD≌△CGE.
∴DF=EG,
∴AD+BE=AF+BG=AB.
(方法三):延长BC,交AM于点F.
∵AM∥BN,
∴∠FCD=∠CBG,
∵∠CBH=∠CBG,
∴∠FCD=∠CBH,
∴AF=AB,
∵∠DAC=∠CAB,AC=AC,
∴△AFC≌△ABC,CF=CB,
∵∠ECG=∠BCG,
∴△FCD≌△BCE,
∴DF=BE,
∴AD+BE=AD+DF=AF=AB.
(3)不成立.
存在.当点D在射线AM上、点E在射线BN的反向延长线上时(如图①),AD-BE=AB.
当点D在射线AM的反向延长线上,点E在射线BN上时(如图②),BE-AD=AB.
(2)成立.
(方法一):在AB上截取AG=AD,连接CG.
∵AC平分∠MAB,
∴∠DAC=∠CAB,
又∵AC=AC,AD=AG,
∴△ADC≌△AGC(SAS),
∴∠DCA=∠ACG,
∵AM∥BN,
∴∠DAC+∠CAB+∠GBC+∠CBE=180°,
∵∠DAC=∠CAB,∠GBC=∠CBE,
∴∠CAB+∠GBC=90°,
∴∠ACB=90°即∠ACG+∠GCB=90°,
∵∠DCA+∠ACG+∠GCB+∠BCE=180°,
∴∠DCA+∠BCE=90°,
∴∠GCB=∠ECB,
∵∠ABC=∠CBE,BC=BC,
∴△BGC≌△BEC.
∴BG=BE,
∴AD+BE=AG+BG,AD+BE=AB.
(方法二):过点C作直线FG⊥AM,垂足为点F,交BN于点G.作CH⊥AB,垂足为点H.
由(1)得AF+BG=AB,
∵AM∥BN,∠AFG=90°,
∴∠BGF=∠FGE=90°,
∵∠DAC=∠CAB,∠ABC=∠CBE,
∴CF=CH,CH=CG,
∴CF=CG,
∵∠FCD=∠ECG,
∴△CFD≌△CGE.
∴DF=EG,
∴AD+BE=AF+BG=AB.
(方法三):延长BC,交AM于点F.
∵AM∥BN,
∴∠FCD=∠CBG,
∵∠CBH=∠CBG,
∴∠FCD=∠CBH,
∴AF=AB,
∵∠DAC=∠CAB,AC=AC,
∴△AFC≌△ABC,CF=CB,
∵∠ECG=∠BCG,
∴△FCD≌△BCE,
∴DF=BE,
∴AD+BE=AD+DF=AF=AB.
(3)不成立.
存在.当点D在射线AM上、点E在射线BN的反向延长线上时(如图①),AD-BE=AB.
当点D在射线AM的反向延长线上,点E在射线BN上时(如图②),BE-AD=AB.
看了 已知:如图所示,直线MA∥N...的网友还看了以下:
两根木条一根长80cm,一根长120cm,将它们的一端重合,顺次放在同一条直线上,此时两根木条的中 2020-05-21 …
氨基酸中的羧基的C与O相连为什么是两条线?与一条线与什么区别吗? 2020-07-11 …
数学圆中的割线与切线怎么证明一个圆中的一条切线的平方等于一条割线最短的一条线与整条割线的成绩(帮帮 2020-07-22 …
一条直线与n条直线相交产生?对同位角?对内错角 2020-07-23 …
中位线的定理是否可以倒推?如三角形中的一条线与其底边平行,且这条线段一端为这个三角形一边的中点,那 2020-08-01 …
平行线等分线段定理的证明过程中为什么AB=BE图传不上就是三条平行线有两条线与它们相交然后任意两条 2020-08-02 …
可不可以只用直尺,圆规三等分一直线呢?书上说不可以,我想可以.线段,我认为可以啊,可以先画等距的四 2020-08-02 …
在行距和列距都是1的n*n方格网中,连接任意两个格点,得到长度不同的线段.(1)当n=1,2,3,4 2020-11-01 …
你能说出N棱柱的顶点数与N的关系及棱的条数与N的关系吗? 2020-11-18 …
三相电,线与线之间的电压是380V每相与N相电压是220V.现在如果线路故障,三根线与N相电压分别是 2021-01-10 …